NeurogeneticsPub Date : 2024-01-01DOI: 10.1007/s10048-024-00747-x
Geraldine Zimmer-Bensch
{"title":"Correction to: New Editors-in-Chief and future directions: a glimpse into the evolving future of Neurogenetics.","authors":"Geraldine Zimmer-Bensch","doi":"10.1007/s10048-024-00747-x","DOIUrl":"10.1007/s10048-024-00747-x","url":null,"abstract":"","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"47"},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139522285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeurogeneticsPub Date : 2023-12-20DOI: 10.1007/s10048-023-00739-3
N. Gammaldi, S. Doccini, S. Bernardi, M. Marchese, M. Cecchini, R. Ceravolo, S. Rapposelli, GM. Ratto, S. Rocchiccioli, F. Pezzini, F. M. Santorelli
{"title":"Dem-Aging: autophagy-related pathologies and the “two faces of dementia”","authors":"N. Gammaldi, S. Doccini, S. Bernardi, M. Marchese, M. Cecchini, R. Ceravolo, S. Rapposelli, GM. Ratto, S. Rocchiccioli, F. Pezzini, F. M. Santorelli","doi":"10.1007/s10048-023-00739-3","DOIUrl":"https://doi.org/10.1007/s10048-023-00739-3","url":null,"abstract":"<p>Neuronal ceroid lipofuscinosis (NCL) is an umbrella term referring to the most frequent childhood-onset neurodegenerative diseases, which are also the main cause of childhood dementia. Although the molecular mechanisms underlying the NCLs remain elusive, evidence is increasingly pointing to shared disease pathways and common clinical features across the disease forms. The characterization of pathological mechanisms, disease modifiers, and biomarkers might facilitate the development of treatment strategies.</p><p>The DEM-AGING project aims to define molecular signatures in NCL and expedite biomarker discovery with a view to identifying novel targets for monitoring disease status and progression and accelerating clinical trial readiness in this field. In this study, we fused multiomic assessments in established NCL models with similar data on the more common late-onset neurodegenerative conditions in order to test the hypothesis of shared molecular fingerprints critical to the underlying pathological mechanisms. Our aim, ultimately, is to combine data analysis, cell models, and omic strategies in an effort to trace new routes to therapies that might readily be applied in the most common forms of dementia.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":"67 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138818851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeurogeneticsPub Date : 2023-12-18DOI: 10.1007/s10048-023-00741-9
Stéphane Abramowicz, Alexandre Dentel, Maxime Chouraqui, Bahram Bodaghi, Sara Touhami
{"title":"Atypical retinopathy in ataxia with vitamin E deficiency: report of a sibship","authors":"Stéphane Abramowicz, Alexandre Dentel, Maxime Chouraqui, Bahram Bodaghi, Sara Touhami","doi":"10.1007/s10048-023-00741-9","DOIUrl":"https://doi.org/10.1007/s10048-023-00741-9","url":null,"abstract":"<p>Typical retinitis pigmentosa (RP) may not be the only retinal phenotype encountered in ataxia with vitamin E deficiency (AVED). The following short case series describes a novel form of retinopathy in AVED. We describe two patients with AVED belonging to the same consanguineous sibship. Both presented an unusual retinopathy consisting of scattered, multifocal, nummular, hyperautofluorescent atrophic retinal patches. The retinopathy remained stable under vitamin E supplementation. We hypothesize these changes to be the result of arrested AVED-related RP following early supplementation with α-tocopherol acetate.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":"28 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138715216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeurogeneticsPub Date : 2023-10-01Epub Date: 2023-08-17DOI: 10.1007/s10048-023-00728-6
Maike Tomforde, Meike Steinbach, Tobias B Haack, Gregor Kuhlenbäumer
{"title":"Family and literature analysis demonstrates phenotypic effect of two variants in the calpain-3 gene.","authors":"Maike Tomforde, Meike Steinbach, Tobias B Haack, Gregor Kuhlenbäumer","doi":"10.1007/s10048-023-00728-6","DOIUrl":"10.1007/s10048-023-00728-6","url":null,"abstract":"<p><p>Both, recessive (LGMD R1) and dominant (LGMD D4) inheritance occur in calpain 3-related muscular dystrophy. We report a family with calpain-related muscular dystrophy caused by two known variants in the calpain 3 gene (CAPN3, NM_000070.3; (I) c.700G>A, p.Gly234Arg and (II) c.1746-20C>G, p.?). Three family members are compound heterozygous and exhibit a relatively homogeneous phenotype characterized by progressive proximal weakness starting in the third to fourth decade of life in the shoulder girdle and spreading to the legs. Two family members affected only by the p.Gly234Arg heterozygous missense variants show a different phenotype characterized by severe exertional myalgia without overt pareses. We conclude that in our family, the missense variant causes a severe myalgic phenotype without pareses that is aggravated by the second intronic variant and put these findings in the context of previous studies of the same variants.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"273-278"},"PeriodicalIF":2.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545561/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10390337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeurogeneticsPub Date : 2023-10-01Epub Date: 2023-07-31DOI: 10.1007/s10048-023-00727-7
Nana Li, Hong Kang, Yanna Zou, Zhen Liu, Ying Deng, Meixian Wang, Lu Li, Hong Qin, Xiaoqiong Qiu, Yanping Wang, Jun Zhu, Mark Agostino, Julian I-T Heng, Ping Yu
{"title":"A novel heterozygous ZBTB18 missense mutation in a family with non-syndromic intellectual disability.","authors":"Nana Li, Hong Kang, Yanna Zou, Zhen Liu, Ying Deng, Meixian Wang, Lu Li, Hong Qin, Xiaoqiong Qiu, Yanping Wang, Jun Zhu, Mark Agostino, Julian I-T Heng, Ping Yu","doi":"10.1007/s10048-023-00727-7","DOIUrl":"10.1007/s10048-023-00727-7","url":null,"abstract":"<p><p>Intellectual disability (ID) is a common neurodevelopmental disorder characterized by significantly impaired adaptive behavior and cognitive capacity. High throughput sequencing approaches have revealed the genetic etiologies for 25-50% of ID patients, while inherited genetic mutations were detected in <5% cases. Here, we investigated the genetic cause for non-syndromic ID in a Han Chinese family. Whole genome sequencing was performed on identical twin sisters diagnosed with ID, their respective children, and their asymptomatic parents. Data was filtered for rare variants, and in silico prediction tools were used to establish pathogenic alleles. Candidate mutations were validated by Sanger sequencing. In silico modeling was used to evaluate the mutation's effects on the protein encoded by a candidate coding gene. A novel heterozygous variant in the ZBTB18 gene c.1323C>G (p.His441Gln) was identified. This variant co-segregated with affected individuals in an autosomal dominant pattern and was not detected in asymptomatic family members. Molecular studies reveal that a p.His441Gln substitution disrupts zinc binding within the second zinc finger and disrupts the capacity for ZBTB18 to bind DNA. This is the first report of an inherited ZBTB18 mutation for ID. This study further validates WGS for the accurate molecular diagnosis of ID.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"251-262"},"PeriodicalIF":2.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10268432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeurogeneticsPub Date : 2023-10-01Epub Date: 2023-08-16DOI: 10.1007/s10048-023-00731-x
Yang You, Xinyi Men, Wenjuan Wu, Shan Liu, Xuexin He, Suzhen Sun, Xiuxia Wang, Baoguang Li
{"title":"Clinical and functional study of two de novo variations of CDKL5 gene.","authors":"Yang You, Xinyi Men, Wenjuan Wu, Shan Liu, Xuexin He, Suzhen Sun, Xiuxia Wang, Baoguang Li","doi":"10.1007/s10048-023-00731-x","DOIUrl":"10.1007/s10048-023-00731-x","url":null,"abstract":"<p><p>The cyclin-dependent kinase like 5 (CDKL5) gene variation is X-linked dominant and is associated with type 2 developmental and epileptic encephalopathy (DEE). Although numerous cases of CDKL5 have been reported, there is limited discussion regarding functional verification. We described two children with DEE caused by de novo variations of CDKL5 gene, analyzed their clinical manifestations, and performed genetic testing on their gene variation sites. The two cases presented with tonic seizures followed by epileptic spasms, indicative of refractory epilepsy. Physical examination revealed abnormal facial features, including wide eye distance, low nose base, and high nose bridge. Both cases exhibited developmental disabilities. Cranial magnetic resonance imaging (MRI) showed widening of the bilateral frontotemporal extracerebral space. Genetic testing identified variations at the gene sites c.463 + 4A > G (splicing) and c.1854_1861delCAAAGTGA (p.D618Efs*18). Minigene experiments further confirmed that the intronic variation c.463 + 4A > G (splicing) disrupted splicing, leading to protein truncation. CDKL5 gene variation can lead to DEE, and intron variation site c.463 + 4A > G (splicing) can cause protein truncation, which is a pathogenic variation.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"263-271"},"PeriodicalIF":2.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10004553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeurogeneticsPub Date : 2023-10-01Epub Date: 2023-09-02DOI: 10.1007/s10048-023-00732-w
Saar Anis, Tsvia Fay-Karmon, Simon Lassman, Fadi Shbat, Orit Lesman-Segev, Nofar Mor, Ortal Barel, Dan Dominissini, Odelia Chorin, Elon Pras, Lior Greenbaum, Sharon Hassin-Baer
{"title":"Adult-onset Alexander disease among patients of Jewish Syrian descent.","authors":"Saar Anis, Tsvia Fay-Karmon, Simon Lassman, Fadi Shbat, Orit Lesman-Segev, Nofar Mor, Ortal Barel, Dan Dominissini, Odelia Chorin, Elon Pras, Lior Greenbaum, Sharon Hassin-Baer","doi":"10.1007/s10048-023-00732-w","DOIUrl":"10.1007/s10048-023-00732-w","url":null,"abstract":"<p><p>Alexander disease (AxD) is a rare autosomal dominant leukodystrophy caused by heterozygous mutations in the glial fibrillary acid protein (GFAP) gene. The age of symptoms onset ranges from infancy to adulthood, with variable clinical and radiological manifestations. Adult-onset AxD manifests as a chronic and progressive condition, characterized by bulbar, motor, cerebellar, and other clinical signs and symptoms. Neuroradiological findings typically involve the brainstem and cervical spinal cord. Adult-onset AxD has been described in diverse populations but is rare in Israel. We present a series of patients diagnosed with adult-onset AxD from three families, all of Jewish Syrian descent. Five patients (4 females) were diagnosed with adult-onset AxD due to the heterozygous mutation c.219G > A, p.Met73Ile in GFAP. Age at symptoms onset ranged from 48 to 61 years. Clinical characteristics were typical and involved progressive bulbar and gait disturbance, followed by pyramidal and cerebellar impairment, dysautonomia, and cognitive decline. Imaging findings included medullary and cervical spinal atrophy and mostly infratentorial white matter hyperintensities. A newly recognized cluster of adult-onset AxD in Jews of Syrian origin is presented. This disorder should be considered in differential diagnosis in appropriate circumstances. Genetic counselling for family members is required in order to discuss options for future family planning.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"303-310"},"PeriodicalIF":2.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10511523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeurogeneticsPub Date : 2023-10-01Epub Date: 2023-07-19DOI: 10.1007/s10048-023-00726-8
Zeyu Zhu, Wenzhe Hou, Yuwen Cao, Haoran Zheng, Wotu Tian, Li Cao
{"title":"Spastic paraplegia type 76 due to novel CAPN1 mutations: three case reports with literature review.","authors":"Zeyu Zhu, Wenzhe Hou, Yuwen Cao, Haoran Zheng, Wotu Tian, Li Cao","doi":"10.1007/s10048-023-00726-8","DOIUrl":"10.1007/s10048-023-00726-8","url":null,"abstract":"<p><p>Spastic paraplegia type 76 (SPG76) is a subtype of hereditary spastic paraplegia (HSP) caused by calpain-1 (CAPN1) mutations. Our study described the phenotypic and genetic characteristics of three families with spastic ataxia due to various CAPN1 mutations and further explored the pathogenesis of the two novel mutations. The three patients were 48, 39, and 48 years old, respectively. Patients 1 and 3 were from consanguineous families, while patient 2 was sporadic. Physical examination showed hypertonia, hyperreflexia, and Babinski signs in the lower limbs. Patients 2 and 3 additionally had dysarthria and depression. CAPN1 mutations were identified by whole-exome sequencing, followed by Sanger sequencing and co-segregation analysis within the family. Functional examination of the newly identified mutations was further explored. Two homozygous mutations were detected in patient 1 (c.213dupG, p.D72Gfs*95) and patient 3 (c.1729+1G>A) with HSP, respectively. Patient 2 had compound heterozygous mutations c.853C>T (p.R285X) and c.1324G>A (p.G442S). Western blotting revealed the p.D72Gfs*95 with a smaller molecular weight than WT and p.G442S. In vitro, the wild-type calpain-1 is mostly located in the cytoplasm and colocalized with tubulin by immunostaining. However, p.D72Gfs*95 and p.G442S abnormally formed intracellular aggregation, with little colocalization with tubulin. In this study, we identified three cases with SPG76, due to four various CAPN1 mutations, presenting lower limb spasticity and ataxia, with or without bulbar involvement and emotional disorder. Among these, c.213dupG and c.1324G>A are first identified in this paper. The genotype-phenotype correlation of the SPG76 cases reported worldwide was further summarized.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"243-250"},"PeriodicalIF":2.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9892649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeurogeneticsPub Date : 2023-10-01Epub Date: 2023-09-05DOI: 10.1007/s10048-023-00734-8
Tahereh Ghorashi, Hossein Darvish, Somayeh Bakhtiari, Abbas Tafakhori, Michael C Kruer, Hossein Mozdarani
{"title":"A biallelic loss-of-function variant in TMEM147 causes profound intellectual disability and spasticity.","authors":"Tahereh Ghorashi, Hossein Darvish, Somayeh Bakhtiari, Abbas Tafakhori, Michael C Kruer, Hossein Mozdarani","doi":"10.1007/s10048-023-00734-8","DOIUrl":"10.1007/s10048-023-00734-8","url":null,"abstract":"<p><p>Intellectual disability (ID), occurring in syndromic or non-syndromic forms, is the most common neurodevelopmental disorder. Although many cases are caused by single gene defects, ID is highly genetically heterogeneous. Biallelic variants in the transmembrane protein TMEM147 have recently been linked to intellectual disability with dysmorphic facial features. TMEM147 is believed to localize to the endoplasmic reticulum membrane and nuclear envelope and also involved in biogenesis of multi-pass membrane proteins. Here, we report two patients born to a consanguineous family with a novel loss-of-function variant; (NM_001242597.2:c.193-197del) in TMEM147 causing intellectual disability and spasticity. Whole exome sequencing and validating Sanger sequencing were utilized to confirm the identified causal variant. Our findings were in line with the previously described patients with TMEM147 variants manifesting intellectual disability as a major clinical sign but also featured spasticity as a phenotypic expansion. This study provides additional evidence for the pathogenicity of TMEM147 mutations in intellectual disability and expands the phenotypic and variant spectrum linked to this gene.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"311-316"},"PeriodicalIF":1.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10283824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}