Gene-gene interaction network analysis indicates CNTN2 is a candidate gene for idiopathic generalized epilepsy.

IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY
Neurogenetics Pub Date : 2024-04-01 Epub Date: 2024-03-09 DOI:10.1007/s10048-024-00748-w
Zhi-Jian Lin, Jun-Wei He, Sheng-Yin Zhu, Li-Hong Xue, Jian-Feng Zheng, Li-Qin Zheng, Bi-Xia Huang, Guo-Zhang Chen, Peng-Xing Lin
{"title":"Gene-gene interaction network analysis indicates CNTN2 is a candidate gene for idiopathic generalized epilepsy.","authors":"Zhi-Jian Lin, Jun-Wei He, Sheng-Yin Zhu, Li-Hong Xue, Jian-Feng Zheng, Li-Qin Zheng, Bi-Xia Huang, Guo-Zhang Chen, Peng-Xing Lin","doi":"10.1007/s10048-024-00748-w","DOIUrl":null,"url":null,"abstract":"<p><p>Twin and family studies have established the genetic contribution to idiopathic generalized epilepsy (IGE). The genetic architecture of IGE is generally complex and heterogeneous, and the majority of the genetic burden in IGE remains unsolved. We hypothesize that gene-gene interactions contribute to the complex inheritance of IGE. CNTN2 (OMIM* 615,400) variants have been identified in cases with familial adult myoclonic epilepsy and other epilepsies. To explore the gene-gene interaction network in IGE, we took the CNTN2 gene as an example and investigated its co-occurrent genetic variants in IGE cases. We performed whole-exome sequencing in 114 unrelated IGE cases and 296 healthy controls. Variants were qualified with sequencing quality, minor allele frequency, in silico prediction, genetic phenotype, and recurrent case numbers. The STRING_TOP25 gene interaction network analysis was introduced with the bait gene CNTN2 (denoted as A). The gene-gene interaction pair mode was presumed to be A + c, A + d, A + e, with a leading gene A, or A + B + f, A + B + g, A + B + h, with a double-gene A + B, or other combinations. We compared the number of gene interaction pairs between the case and control groups. We identified three pairs in the case group, CNTN2 + PTPN18, CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2, and CNTN2 + PTPRZ1, while we did not discover any pairs in the control group. The number of gene interaction pairs in the case group was much more than in the control group (p = 0.021). Taking together the genetic bioinformatics, reported epilepsy cases, and statistical evidence in the study, we supposed CNTN2 as a candidate pathogenic gene for IGE. The gene interaction network analysis might help screen candidate genes for IGE or other complex genetic disorders.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"131-139"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10048-024-00748-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Twin and family studies have established the genetic contribution to idiopathic generalized epilepsy (IGE). The genetic architecture of IGE is generally complex and heterogeneous, and the majority of the genetic burden in IGE remains unsolved. We hypothesize that gene-gene interactions contribute to the complex inheritance of IGE. CNTN2 (OMIM* 615,400) variants have been identified in cases with familial adult myoclonic epilepsy and other epilepsies. To explore the gene-gene interaction network in IGE, we took the CNTN2 gene as an example and investigated its co-occurrent genetic variants in IGE cases. We performed whole-exome sequencing in 114 unrelated IGE cases and 296 healthy controls. Variants were qualified with sequencing quality, minor allele frequency, in silico prediction, genetic phenotype, and recurrent case numbers. The STRING_TOP25 gene interaction network analysis was introduced with the bait gene CNTN2 (denoted as A). The gene-gene interaction pair mode was presumed to be A + c, A + d, A + e, with a leading gene A, or A + B + f, A + B + g, A + B + h, with a double-gene A + B, or other combinations. We compared the number of gene interaction pairs between the case and control groups. We identified three pairs in the case group, CNTN2 + PTPN18, CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2, and CNTN2 + PTPRZ1, while we did not discover any pairs in the control group. The number of gene interaction pairs in the case group was much more than in the control group (p = 0.021). Taking together the genetic bioinformatics, reported epilepsy cases, and statistical evidence in the study, we supposed CNTN2 as a candidate pathogenic gene for IGE. The gene interaction network analysis might help screen candidate genes for IGE or other complex genetic disorders.

Abstract Image

基因-基因相互作用网络分析表明,CNTN2 是特发性全身性癫痫的候选基因。
双胞胎和家族研究已经确定了特发性全身性癫痫(IGE)的遗传因素。特发性全身性癫痫的遗传结构通常是复杂和异质的,而且特发性全身性癫痫的大部分遗传因素仍未解决。我们假设基因与基因之间的相互作用导致了 IGE 的复杂遗传。在家族性成人肌阵挛性癫痫和其他癫痫病例中发现了 CNTN2(OMIM* 615,400)变异。为了探索 IGE 的基因-基因相互作用网络,我们以 CNTN2 基因为例,研究了其在 IGE 病例中的共现基因变异。我们对 114 例无关的 IGE 病例和 296 例健康对照者进行了全基因组测序。根据测序质量、小等位基因频率、硅预测、遗传表型和复发病例数对变异进行了鉴定。STRING_TOP25 基因相互作用网络分析以 CNTN2(表示为 A)为诱饵基因。基因-基因互作对模式假定为:A + c、A + d、A + e(带主导基因 A),或 A + B + f、A + B + g、A + B + h(带双基因 A + B),或其他组合。我们比较了病例组和对照组的基因交互对数量。我们在病例组中发现了三对基因互作,即 CNTN2 + PTPN18、CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2 和 CNTN2 + PTPRZ1,而在对照组中没有发现任何基因互作对。病例组的基因互作对数量远远多于对照组(p = 0.021)。综合基因生物信息学、报告的癫痫病例和研究中的统计证据,我们认为 CNTN2 是 IGE 的候选致病基因。基因相互作用网络分析可能有助于筛选 IGE 或其他复杂遗传疾病的候选基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurogenetics
Neurogenetics 医学-临床神经学
CiteScore
3.90
自引率
0.00%
发文量
24
审稿时长
6 months
期刊介绍: Neurogenetics publishes findings that contribute to a better understanding of the genetic basis of normal and abnormal function of the nervous system. Neurogenetic disorders are the main focus of the journal. Neurogenetics therefore includes findings in humans and other organisms that help understand neurological disease mechanisms and publishes papers from many different fields such as biophysics, cell biology, human genetics, neuroanatomy, neurochemistry, neurology, neuropathology, neurosurgery and psychiatry. All papers submitted to Neurogenetics should be of sufficient immediate importance to justify urgent publication. They should present new scientific results. Data merely confirming previously published findings are not acceptable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信