{"title":"Is the air-breathing organ a significant route for CO<sub>2</sub> excretion during aquatic hypercapnia in the pirarucu, Arapaima gigas?","authors":"Chris M Wood, Bernd Pelster, Adalberto Luis Val","doi":"10.1007/s00360-024-01597-7","DOIUrl":"10.1007/s00360-024-01597-7","url":null,"abstract":"<p><p>The pirarucu is one of the very few obligate air-breathing fish, employing a gigantic, highly vascularized air-breathing organ (ABO). Traditionally, the ABO is thought to serve mainly for O<sub>2</sub> uptake (ṀO<sub>2</sub>), with the gills providing the major route for excretion of CO<sub>2</sub> (ṀCO<sub>2</sub>) and N-waste. However, under aquatic hypercapnia, a common occurrence in its natural environment, branchial ṀCO<sub>2</sub> to the water may become impaired. Under these conditions, does the ABO become an important route of ṀCO<sub>2</sub> excretion to the air? We have answered this question by measuring ṀCO<sub>2</sub> and ṀO<sub>2</sub> in both air and water phases, as well as the pattern of air-breathing, in pirarucu under aquatic normocapnia and hypercapnia (3% CO<sub>2</sub>). Indeed, ṀCO<sub>2</sub> to the air phase via the ABO increased 2- to 3-fold during exposure to high water PCO<sub>2</sub>, accounting for 59-71% of the total, with no change in the dominant contribution of the ABO to ṀO<sub>2</sub> (71-75% of the total). These adjustments were quickly reversed upon restoration of aquatic normocapnia. During aquatic hypercapnia, ṀCO<sub>2</sub> via the ABO became more effective over time, and the pattern of air-breathing changed, exhibiting increased frequency and decreased breath volume. Ammonia-N excretion (86-88% of total) dominated over urea-N excretion and tended to increase during exposure to aquatic hypercapnia. We conclude that the ability of the ABO to take on the dominant role in CO<sub>2</sub> excretion when required may have been an important driver in the original evolution of air-breathing, as well as in the functionality of the ABO in modern air-breathing fish.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"39-51"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Faiz-Ul Hassan, Muhammad Safdar, Muhammad Younus, Muhammad Asif Arain
{"title":"Regulation of energy metabolism by non-coding RNAs in livestock species: a review.","authors":"Faiz-Ul Hassan, Muhammad Safdar, Muhammad Younus, Muhammad Asif Arain","doi":"10.1007/s00360-024-01596-8","DOIUrl":"10.1007/s00360-024-01596-8","url":null,"abstract":"<p><p>The optimisation of livestock production relies on efficient energy metabolism. This review focused on elaborate regulatory processes governed by non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). It explores the complex energy metabolism processes in livestock, elucidating the functions of ncRNAs in the expression of genes and pathways. miRNAs have been identified as significant regulators of glycolysis and glucose metabolism, whereas lncRNAs are known to affect adipogenesis and mitochondrial activity. Moreover, circRNAs have a substantial influence on the regulation of energy. In addition, this is not only enriching non-coding RNA-mediated energy control but also sheds light on possible applications. It is derived from its ability to condense complex molecular systems, thereby offering crucial insights to researchers. Through a comprehensive analysis of the intricate relationship between ncRNAs and energy metabolism, the information of this review provides a valuable framework for the implementation of focused interventions that hold the potential to significantly enhance the efficiency of livestock production.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"1-12"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sleep deprivation stimulates adaptive thermogenesis by activating AMPK pathway in mice.","authors":"Tian-Shu Zheng, Xin-Ran Gao, Rui-Ping Xu, Yi-Fei Zhao, Zhi-Teng Yang, De-Hua Wang","doi":"10.1007/s00360-024-01590-0","DOIUrl":"10.1007/s00360-024-01590-0","url":null,"abstract":"<p><p>Sleep deprivation (SD) can affect the adaptive thermogenesis in laboratory rodents, but the molecular mechanism and the crosstalk with other organs remain largely unknown. In order to investigate the effects and mechanisms of SD on thermoregulation and energy metabolism, here we measured the changes of body weight, body fat mass, body temperature, resting metabolic rate (RMR), and thermogenic gene expression in brown adipose tissue (BAT), white adipose tissue (WAT), skeleton muscle and liver in C57BL/6J mice during 7-day SD with rotating rod sleep deprivation device. Results showed that compared with the control group, the body weight and body fat mass of SD mice were decreased and RMR of SD mice increased. The gene expression of Ampk, Pgc1α and Ucp1 which related to thermogenesis in BAT and WAT were significantly increased, and the expression of Ampk, Serca1, Serca2 and Ucp3 which related to thermogenesis in skeletal muscle were significantly increased in SD mice. Taken together, these data demonstrated that 7-day SD enhanced the adaptive thermogenesis in mice by activating AMPK, including the upregulation of the AMPK - PGC1α - UCP1 pathway in BAT, and the AMPK - UCP3 and SLN - SERCA pathway in skeleton muscle. Our data provide the molecular evidence for SD-stimulated adaptive thermogenesis and energy metabolism in small mammals.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"141-153"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Carmelet-Rescan, Mary Morgan-Richards, Steven A Trewick
{"title":"Metabolic differentiation of brushtail possum populations resistant and susceptible to plant toxins revealed via differential gene expression.","authors":"David Carmelet-Rescan, Mary Morgan-Richards, Steven A Trewick","doi":"10.1007/s00360-024-01591-z","DOIUrl":"10.1007/s00360-024-01591-z","url":null,"abstract":"<p><p>The Australian brushtail possum (Trichosurus vulpecula) is adapted to a wide range of food plants across its range and is exposed to numerous physiological challenges. Populations that are resistant to the plant toxin sodium fluoroacetate are of particular interest as this compound has been used since the 1940s for vertebrate pest management around the world. Candidate gene identification is an important first step in understanding how spatial populations have responded to local selection resulting in local physiological divergence. We employ differential gene expression of liver samples from wild-caught brushtail possums from toxin-resistant and toxin-susceptible populations to identify candidate genes that might be involved in metabolic pathways associated with toxin-resistance. This allowed us to identify genetic pathways involved in resistance to the plant toxin sodium fluoroacetate in Western Australian possums but not those originally from south eastern Australia. We identified differentially expressed genes in the liver that are associated with cell signalling, encapsulating structure, cell mobility, and tricarboxylic acid cycle. The gene expression differences detected indicate which metabolic pathways are most likely to be associated with sodium fluoroacetate resistance in these marsupials and we provide a comprehensive list of candidate genes and pathways to focus on for future studies.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"103-121"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839783/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential fatty acids utilization across life stages in a Vespa species.","authors":"Sofia Bouchebti, Eran Levin","doi":"10.1007/s00360-024-01589-7","DOIUrl":"10.1007/s00360-024-01589-7","url":null,"abstract":"<p><p>Dietary fatty acids (FAs) are essential macronutrients affecting animal fitness, growth, and development. While the degree of saturation of FAs usually determines the level of absorption and allocation within the body, the utilization of dietary FAs across the life stages of individuals remains unknown. We used three different 13 C labeled FAs, with a different saturation level (linoleic acid (18:2), oleic acid (18:1), and palmitic acid (16:0)), to investigate the absorption and allocation of dietary FAs across the life stages of the Oriental hornet. Our results show that only larvae utilized all tested FAs as metabolic fuel, with palmitic acid being oxidized at the highest rate. Oleic and palmitic acids were predominantly incorporated into larval tissues, while oleic acid dominated pupal tissues. In contrast, linoleic and oleic acids were predominantly incorporated into adult tissues. These findings highlight a life stage-dependent shift in certain FAs utilization, with palmitic acid mostly utilized in early stages and linoleic acid in adulthood, while oleic acid remained consistently utilized across all life stages. This study emphasizes the importance of considering FA saturation and life stage dynamics in understanding FA utilization patterns.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"23-29"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pedro Goes Nogueira-de-Sá, José Eduardo Pereira Wilken Bicudo, José Guilherme Chaui-Berlinck
{"title":"Entropy generation and water conservation in the mammalian nephron.","authors":"Pedro Goes Nogueira-de-Sá, José Eduardo Pereira Wilken Bicudo, José Guilherme Chaui-Berlinck","doi":"10.1007/s00360-024-01599-5","DOIUrl":"10.1007/s00360-024-01599-5","url":null,"abstract":"<p><p>During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation. We demonstrate that active ionic reabsorption exerts a pressure above 15,000 torr, a value more than 500 times greater than Starling forces. The entropy generation of the reabsorption process is found to be 20-fold higher than that of renal blood perfusion. These findings imply that the evolutionary history of vertebrates, particularly terrestrial mammals, has shaped the renal architecture to prioritize water conservation by means of an entropically costly process. This approach to the nephron function provides insights into the physiological adaptations of terrestrial vertebrates to conserve water and sheds light on the intricate interplay between environmental conditions and evolutionary responses in renal physiology.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"81-89"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iván Beltrán, Catarina Vila-Pouca, Rebecca Loiseleur, Jonathan K Webb, Suzana Herculano-Houzel, Martin J Whiting
{"title":"Effect of elevated incubation temperatures on learning and brain anatomy of hatchling and juvenile lizards.","authors":"Iván Beltrán, Catarina Vila-Pouca, Rebecca Loiseleur, Jonathan K Webb, Suzana Herculano-Houzel, Martin J Whiting","doi":"10.1007/s00360-024-01595-9","DOIUrl":"10.1007/s00360-024-01595-9","url":null,"abstract":"<p><p>Global warming is a major threat to reptiles because temperature strongly affects their development. High incubation temperatures reduce hatchling body size and physiological performance; however, its effects on brain development and learning abilities are less well understood. In particular, it remains unclear if the effects of elevated temperatures on learning are restricted to hatchlings or instead will persist later in life. To address this gap, we examined the effect of 'current' and 'future' (end-of-century, + 4 °C) incubation temperatures on hatchling and juvenile geckos Amalosia lesueurii, to test: (1) if elevated temperatures affect hatchling learning ability; (2) if the effects on learning persist in juvenile lizards, and (3) if and how elevated temperatures affect hatchling and juvenile brain anatomy and neuronal count. We found that fewer future-incubated hatchlings succeeded in the learning tasks. Nonetheless, the successful ones needed fewer trials to learn compared to current-incubated hatchlings, possibly due to a higher motivation. Reduced learning ability was still observed at the juvenile stage, but it did not differ between treatments due to a reduced cognitive performance of current-incubated juveniles. Future-incubated hatchlings had a smaller telencephalon, but this pattern was not found in juveniles. Neuron number and density in hatchlings or juveniles from both treatments were not different. Our results suggest that global warming will affect hatchling survival in the wild but it remains unclear if future-incubated lizards could compensate for the harmful effects of elevated temperatures. Further testing beyond the laboratory is required to understand whether phenotypic plasticity in lizards is sufficient to track global warming.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"67-79"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142796502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard W Hill, Jacob J Manteuffel, Bradley A White
{"title":"Apneic uptake of atmospheric O<sub>2</sub> by deeply hypothermic nestlings of the white-footed mouse (Peromyscus leucopus): circulation and lungs.","authors":"Richard W Hill, Jacob J Manteuffel, Bradley A White","doi":"10.1007/s00360-024-01585-x","DOIUrl":"10.1007/s00360-024-01585-x","url":null,"abstract":"<p><p>Nestling white-footed mice (Peromyscus leucopus) are born in the earliest days of spring in cold climates. If the nestlings are by accident exposed to ambient temperatures near freezing (0-7 °C) at early ages (2-10 days old), they may experience body temperatures (T<sub>b</sub>s) equally low. During such hypothermia, although their heart keeps beating, they become apneic (cease inhaling and exhaling). However, they have an exceptional ability (e.g., compared to Mus musculus) to tolerate these conditions for at least several hours, after which they revive if rewarmed by parents. This paper addresses the physiology of the apneic period. We show that apneic, hypothermic nestlings undergo physiologically important exchanges of gases with the atmosphere. These gas exchanges do not occur across the skin. Instead they occur via the trachea and lungs even though the animals are apneic. Most significantly, when hypothermic neonates are in apnea in ordinary air, they take up O<sub>2</sub> steadily from the atmosphere throughout the apneic period, and the evidence available indicates that this O<sub>2</sub> uptake is essential for the nestlings' survival. At T<sub>b</sub>s of 2-7 °C, the nestlings' rate of O<sub>2</sub> consumption varies quasi-exponentially with T<sub>b</sub> and averages 0.04 mL O<sub>2</sub> g<sup>- 1</sup> h<sup>- 1</sup>, closely similar to the rate expressed by adult mammalian hibernators in hibernation at similar T<sub>b</sub>s. Morphometric analysis indicates that, at all focal ages, O<sub>2</sub> transport along the full length of the trachea can take place by diffusion at rates adequate to meet the measured rates of metabolic O<sub>2</sub> consumption.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"123-139"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alyssa M Weinrauch, Tamzin A Blewett, W Gary Anderson
{"title":"Characterisation of intestinal amino acid and oleic acid absorption and their interaction in the Pacific spiny dogfish (Squalus suckleyi).","authors":"Alyssa M Weinrauch, Tamzin A Blewett, W Gary Anderson","doi":"10.1007/s00360-024-01601-0","DOIUrl":"10.1007/s00360-024-01601-0","url":null,"abstract":"<p><p>Elasmobranchs are commonly carnivores and are important in energy transfer across marine ecosystems. Despite this, relatively few studies have examined the physiological underpinnings of nutrient acquisition in these animals. Here, we investigated the mechanisms of uptake at the spiral valve intestine for two representative amino acids (<sub>L</sub>-alanine, <sub>L</sub>-leucine) and one representative fatty acid (oleic acid), each common to the diet of a carnivore, the Pacific spiny dogfish (Squalus suckleyi). Transport was saturable for all three nutrients, depending upon transport calculation metric (i.e., mucosal disappearance, serosal appearance, or tissue accumulation). Over 0-10 mM range of amino acids the concentration at which ½ maximal transport occurred (K<sub>m</sub>; a measure of transporter affinity) was 11.9 and 11.2 mM for tissue accumulation of alanine and leucine, respectively. Oleic acid transport was measured at lower concentrations (0-200 µM) and tissue accumulation did not reach saturation. Putative amino acid transport systems were delineated upon confirmation of sodium dependence and competitive inhibition with threonine, glycine, and lysine. The interplay of nutrient combinations on the modulation of nutrient acquisition rates, which better mimics the complex composition of both a meal and the internal osmolytes, was next investigated. Here, the application of serosal oleic acid led to diminished mucosal disappearance of leucine. Feeding did not significantly alter transport rates, perhaps indicative of maximal transport of these energy sources whenever the substrate is available given their importance both as metabolic fuels and precursors to the osmolyte urea.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"53-65"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of acute cooling and bradycardia on central venous pressure and cardiac function in Nile tilapia (Oreochromis niloticus).","authors":"E S Porter, A K Gamperl","doi":"10.1007/s00360-024-01600-1","DOIUrl":"https://doi.org/10.1007/s00360-024-01600-1","url":null,"abstract":"<p><p>We developed and validated a surgical technique to measure central venous pressure (CVP) in Nile tilapia, and investigated the effects of an acute temperature decrease (from 30 vs. 24 °C) and changes in heart rate (f<sub>H</sub>) using zatebradine hydrocholoride, which decreases intrinsic f<sub>H,</sub> on this species' cardiac function. As predicted, f<sub>H</sub> and cardiac output ( <math><mover><mi>Q</mi> <mo>˙</mo></mover> </math> ) were ~ 40% lower in the acutely cooled fish, and both groups had very comparable (i.e., within 10%) values for stroke volume (V<sub>S</sub>)<sub>.</sub> The CVP of fish acutely exposed to 24 °C was consistently ~ 0.04 kPa higher than in those measured at 30 °C across all concentrations of zatebradine (i.e., CVP increased from 0.04 to 0.11 kPa vs. - 0.01-0.07 kPa for 24 vs. 30 °C tilapia, respectively, as f<sub>H</sub> was reduced). However, this did not result in an increase in V<sub>S</sub> due to a right-shifted relationship between CVP and V<sub>S</sub> for the 24 °C fish. These data suggest that the V<sub>S</sub> of tilapia is less sensitive to changes/increases in CVP when temperature is acutely lowered, and that regardless of increases in preload (CVP), <math><mover><mi>Q</mi> <mo>˙</mo></mover> </math> is primarily modulated by f<sub>H</sub> in this species.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}