褪黑素及其激动剂对连续光照和去松果体大鼠血压和血清内皮素-1的影响。

IF 1.7 3区 生物学 Q4 PHYSIOLOGY
Evan B Othman, Ismail M Maulood, Nazar M Shareef Mahmood
{"title":"褪黑素及其激动剂对连续光照和去松果体大鼠血压和血清内皮素-1的影响。","authors":"Evan B Othman, Ismail M Maulood, Nazar M Shareef Mahmood","doi":"10.1007/s00360-025-01610-7","DOIUrl":null,"url":null,"abstract":"<p><p>The present study investigates the roles of melatonin (MEL) and its agonist ramelteon (RAM) on blood pressure regulation, nitric oxide (NO), and oxidative stress and plasma endothelin-1(ET-1) levels in continuous light exposure and pinealectomized conditions. This study includes two experiments. The first experiment involved control, continuous light emitting diode (LED) exposure, continuous LED + MEL administration, and continuous LED + RAM. The second experiment included control, pinealectomy, pinealectomy + MEL administration, pinealectomy + RAM administration, and pinealectomy + continuous LED exposure. The present results showed significant increase of systolic blood pressure (SBP) of continuous LED exposure group, pinealectomy, and pinealectomy with continuous LED exposure. On the contrary, MEL and RAM both decreased SBP. Additionally, the continuous LED exposure considerably increased malondialdehyde (MDA). However, MEL increased both plasma ET-1 slightly and ET-1 significantly but RAM dramatically increased ET-1. While, both of MEL and RAM decreased MDA. In the second experiment, while MDA dramatically increased after pinealectomy and pinealectomy with LED illumination, ET-1 and NO were only a little reduced. Melatonin elevated plasma ET-1 and NO significantly. While, MDA was greatly reduced by MEL but not by RAM. The results suggested that MEL and RAM could attenuate SBP mostly via increasing NO generation and oxidative stress reduction.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of melatonin and its agonist on blood pressure and serum endothelin-1 in continuous light and pinealectomized rats.\",\"authors\":\"Evan B Othman, Ismail M Maulood, Nazar M Shareef Mahmood\",\"doi\":\"10.1007/s00360-025-01610-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study investigates the roles of melatonin (MEL) and its agonist ramelteon (RAM) on blood pressure regulation, nitric oxide (NO), and oxidative stress and plasma endothelin-1(ET-1) levels in continuous light exposure and pinealectomized conditions. This study includes two experiments. The first experiment involved control, continuous light emitting diode (LED) exposure, continuous LED + MEL administration, and continuous LED + RAM. The second experiment included control, pinealectomy, pinealectomy + MEL administration, pinealectomy + RAM administration, and pinealectomy + continuous LED exposure. The present results showed significant increase of systolic blood pressure (SBP) of continuous LED exposure group, pinealectomy, and pinealectomy with continuous LED exposure. On the contrary, MEL and RAM both decreased SBP. Additionally, the continuous LED exposure considerably increased malondialdehyde (MDA). However, MEL increased both plasma ET-1 slightly and ET-1 significantly but RAM dramatically increased ET-1. While, both of MEL and RAM decreased MDA. In the second experiment, while MDA dramatically increased after pinealectomy and pinealectomy with LED illumination, ET-1 and NO were only a little reduced. Melatonin elevated plasma ET-1 and NO significantly. While, MDA was greatly reduced by MEL but not by RAM. The results suggested that MEL and RAM could attenuate SBP mostly via increasing NO generation and oxidative stress reduction.</p>\",\"PeriodicalId\":56033,\"journal\":{\"name\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00360-025-01610-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-025-01610-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了褪黑激素(MEL)及其激动剂ramelteon (RAM)在持续光照和松果体切除条件下对血压调节、一氧化氮(NO)、氧化应激和血浆内皮素-1(ET-1)水平的作用。本研究包括两个实验。第一个实验涉及控制、连续发光二极管(LED)曝光、连续LED + MEL管理和连续LED + RAM。第二个实验包括对照组、松果体切除术、松果体切除术+ MEL给药、松果体切除术+ RAM给药、松果体切除术+连续LED照射。结果显示,连续LED暴露组、松果体切除术组和连续LED暴露松果体切除术组收缩压(SBP)显著升高。相反,MEL和RAM均能降低收缩压。此外,持续的LED暴露显著增加丙二醛(MDA)。然而,MEL使血浆ET-1略有增加,并显著增加,而RAM使ET-1显著增加。而MEL和RAM均能降低MDA。在第二个实验中,果体切除术和LED照明下的果体切除术后MDA显著升高,ET-1和NO仅略有降低。褪黑素显著升高血浆ET-1和NO。而MEL对MDA的影响较大,RAM对MDA的影响较小。结果表明,MEL和RAM主要通过增加NO生成和减少氧化应激来减弱收缩压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of melatonin and its agonist on blood pressure and serum endothelin-1 in continuous light and pinealectomized rats.

The present study investigates the roles of melatonin (MEL) and its agonist ramelteon (RAM) on blood pressure regulation, nitric oxide (NO), and oxidative stress and plasma endothelin-1(ET-1) levels in continuous light exposure and pinealectomized conditions. This study includes two experiments. The first experiment involved control, continuous light emitting diode (LED) exposure, continuous LED + MEL administration, and continuous LED + RAM. The second experiment included control, pinealectomy, pinealectomy + MEL administration, pinealectomy + RAM administration, and pinealectomy + continuous LED exposure. The present results showed significant increase of systolic blood pressure (SBP) of continuous LED exposure group, pinealectomy, and pinealectomy with continuous LED exposure. On the contrary, MEL and RAM both decreased SBP. Additionally, the continuous LED exposure considerably increased malondialdehyde (MDA). However, MEL increased both plasma ET-1 slightly and ET-1 significantly but RAM dramatically increased ET-1. While, both of MEL and RAM decreased MDA. In the second experiment, while MDA dramatically increased after pinealectomy and pinealectomy with LED illumination, ET-1 and NO were only a little reduced. Melatonin elevated plasma ET-1 and NO significantly. While, MDA was greatly reduced by MEL but not by RAM. The results suggested that MEL and RAM could attenuate SBP mostly via increasing NO generation and oxidative stress reduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
51
审稿时长
3.5 months
期刊介绍: The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信