IEEE Transactions on Games最新文献

筛选
英文 中文
Full DouZero+: Improving DouDizhu AI by Opponent Modeling, Coach-Guided Training and Bidding Learning 全斗零+:通过对手建模、教练指导训练和出价学习改进斗地主人工智能
IF 1.7 4区 计算机科学
IEEE Transactions on Games Pub Date : 2023-07-28 DOI: 10.1109/TG.2023.3299612
Youpeng Zhao;Jian Zhao;Xunhan Hu;Wengang Zhou;Houqiang Li
{"title":"Full DouZero+: Improving DouDizhu AI by Opponent Modeling, Coach-Guided Training and Bidding Learning","authors":"Youpeng Zhao;Jian Zhao;Xunhan Hu;Wengang Zhou;Houqiang Li","doi":"10.1109/TG.2023.3299612","DOIUrl":"10.1109/TG.2023.3299612","url":null,"abstract":"With the development of deep reinforcement learning, much progress in various perfect and imperfect information games has been achieved. Among these games, \u0000<italic>DouDizhu</i>\u0000, a popular card game in China, poses great challenges because of the imperfect information, large state and action space as well as the cooperation issue. In this article, we put forward an AI system for this game, which adopts opponent modeling and coach-guided training to help agents make better decisions when playing cards. Besides, we take the bidding phase of \u0000<italic>DouDizhu</i>\u0000 into consideration, which is usually ignored by existing works, and train a bidding network using Monte Carlo simulation. As a result, we achieve a full version of our AI system that is applicable to real-world competitions. We conduct extensive experiments to evaluate the effectiveness of the three techniques adopted in our method and demonstrate the superior performance of our AI over the state-of-the-art \u0000<italic>DouDizhu</i>\u0000 AI, i.e., DouZero. We upload our AI systems, one is bidding-free and the other is equipped with a bidding network, to Botzone platform and they both rank the first among over 400 and 250 AI programs on the two corresponding leaderboards, respectively.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 3","pages":"518-529"},"PeriodicalIF":1.7,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62570319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating Interpretable Play-Style Descriptions Through Deep Unsupervised Clustering of Trajectories 通过深度无监督轨迹聚类生成可解释的游戏风格描述
IF 2.3 4区 计算机科学
IEEE Transactions on Games Pub Date : 2023-07-26 DOI: 10.1109/TG.2023.3299074
Branden Ingram;Clint van Alten;Richard Klein;Benjamin Rosman
{"title":"Generating Interpretable Play-Style Descriptions Through Deep Unsupervised Clustering of Trajectories","authors":"Branden Ingram;Clint van Alten;Richard Klein;Benjamin Rosman","doi":"10.1109/TG.2023.3299074","DOIUrl":"10.1109/TG.2023.3299074","url":null,"abstract":"In any game, play style is a concept that describes the technique and strategy employed by a player to achieve a goal. Identifying a player's style is desirable as it can enlighten players on which approaches work better or worse in different scenarios and inform developers of the value of design decisions. In previous work, we demonstrated an unsupervised LSTM-autoencoder clustering approach for play-style identification capable of handling multidimensional variable length player trajectories. The efficacy of our model was demonstrated on both complete and partial trajectories in both a simulated and natural environment. Lastly, through state frequency analysis, the properties of each of the play styles were identified and compared. This work expands on this approach by demonstrating a process by which we utilize temporal information to identify the decision boundaries related to particular clusters. Additionally, we demonstrate further robustness by applying the same techniques to \u0000<italic>MiniDungeons</i>\u0000, another popular domain for player modeling research. Finally, we also propose approaches for determining mean play-style examples suitable for describing general play-style behaviors and for determining the correct number of represented play-styles.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"15 4","pages":"507-516"},"PeriodicalIF":2.3,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62570282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchically Composing Level Generators for the Creation of Complex Structures 创建复杂结构的分层合成级发生器
IF 2.3 4区 计算机科学
IEEE Transactions on Games Pub Date : 2023-07-21 DOI: 10.1109/TG.2023.3297619
Michael Beukman;Manuel Fokam;Marcel Kruger;Guy Axelrod;Muhammad Nasir;Branden Ingram;Benjamin Rosman;Steven James
{"title":"Hierarchically Composing Level Generators for the Creation of Complex Structures","authors":"Michael Beukman;Manuel Fokam;Marcel Kruger;Guy Axelrod;Muhammad Nasir;Branden Ingram;Benjamin Rosman;Steven James","doi":"10.1109/TG.2023.3297619","DOIUrl":"https://doi.org/10.1109/TG.2023.3297619","url":null,"abstract":"Procedural content generation (PCG) is a growing field, with numerous applications in the video game industry and great potential to help create better games at a fraction of the cost of manual creation. However, much of the work in PCG is focused on generating relatively straightforward levels in simple games, as it is challenging to design an optimizable objective function for complex settings. This limits the applicability of PCG to more complex and modern titles, hindering its adoption in the industry. Our work aims to address this limitation by introducing a compositional level generation method that recursively composes simple low-level generators to construct large and complex creations. This approach allows for easily-optimizable objectives and the ability to design a complex structure in an interpretable way by referencing lower-level components. We empirically demonstrate that our method outperforms a noncompositional baseline by more accurately satisfying a designer's functional requirements in several tasks. Finally, we provide a qualitative showcase (in \u0000<italic>Minecraft</i>\u0000) illustrating the large and complex, but still coherent, structures that were generated using simple base generators.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 2","pages":"459-469"},"PeriodicalIF":2.3,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mouse Sensitivity in First-Person Targeting Tasks 小鼠对第一人称目标任务的敏感性
IF 2.3 4区 计算机科学
IEEE Transactions on Games Pub Date : 2023-07-17 DOI: 10.1109/TG.2023.3293692
Ben Boudaoud;Josef Spjut;Joohwan Kim
{"title":"Mouse Sensitivity in First-Person Targeting Tasks","authors":"Ben Boudaoud;Josef Spjut;Joohwan Kim","doi":"10.1109/TG.2023.3293692","DOIUrl":"https://doi.org/10.1109/TG.2023.3293692","url":null,"abstract":"Mouse sensitivity in first-person targeting tasks is a highly debated issue. Recommendations within a single game can vary by a factor of 10× or more and are an active topic of experimentation in both competitive and recreational esports communities. Inspired by work in pointer-based gain optimization and extending our previous results from the first user study focused on mouse sensitivity in first-person targeting tasks (Boudaoud et al., 2023), we describe a range of optimal mouse sensitivity wherein players perform statistically significantly better in task completion time and throughput. For tasks involving first-person view control, mouse sensitivity is best described using the ratio between an in-game rotation of the view and corresponding physical displacement of the mouse. We discuss how this displacement-to-rotation sensitivity is incompatible with the control-display gain reported in traditional pointer-based gain studies as well as other rotational gains reported in head-controlled interface studies. We provide additional details regarding impacts of mouse dots per inch, on reported sensitivity, the distribution of spatial difficulty in our experiment, our submovement parsing algorithm, and relationships between measured parameters, further demonstrating optimal sensitivity arising from a speed-precision tradeoff. We conclude our work by updating and improving our suggestions for mouse sensitivity selection and refining directions for future work.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"15 4","pages":"493-506"},"PeriodicalIF":2.3,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138678654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subjective and Objective Analysis of Streamed Gaming Videos 流媒体游戏视频的主观和客观分析
IF 2.3 4区 计算机科学
IEEE Transactions on Games Pub Date : 2023-07-07 DOI: 10.1109/TG.2023.3293093
Xiangxu Yu;Zhenqiang Ying;Neil Birkbeck;Yilin Wang;Balu Adsumilli;Alan C. Bovik
{"title":"Subjective and Objective Analysis of Streamed Gaming Videos","authors":"Xiangxu Yu;Zhenqiang Ying;Neil Birkbeck;Yilin Wang;Balu Adsumilli;Alan C. Bovik","doi":"10.1109/TG.2023.3293093","DOIUrl":"10.1109/TG.2023.3293093","url":null,"abstract":"The rising popularity of online user-generated-content (UGC) in the form of streamed and shared videos has hastened the development of perceptual video quality assessment (VQA) models, which can be used to help optimize their delivery. Gaming videos, which are a relatively new type of UGC videos, are created when skilled and casual gamers post videos of their gameplay. These kinds of screenshots of UGC gameplay videos have become extremely popular on major streaming platforms, such as YouTube and Twitch. Synthetically generated gaming content presents challenges to existing VQA algorithms, including those based on natural scene/video statistics models. Synthetically generated gaming content presents different statistical behavior than naturalistic videos. A number of studies have been directed toward understanding the perceptual characteristics of professionally generated gaming videos arising in gaming video streaming, online gaming, and cloud gaming. However, little work has been done on understanding the quality of UGC gaming videos, and how it can be characterized and predicted. Toward boosting the progress of gaming video VQA model development, we conducted a comprehensive study of subjective and objective VQA models on UGC gaming videos. To do this, we created a novel UGC gaming video resource, called the LIVE-YouTube Gaming video quality (LIVE-YT-Gaming) database, comprised of 600 real UGC gaming videos. We conducted a subjective human study on this data, yielding 18 600 human quality ratings recorded by 61 human subjects. We also evaluated a number of state-of-the-art VQA models on the new database, including a new one, called GAME-VQP, based on both natural video statistics and CNN-learned features. To help support work in this field, we are making the new LIVE-YT-Gaming Database, along with code for GAME-VQP, publicly available through the link: \u0000<uri>https://live.ece.utexas.edu/research/LIVE-YT-Gaming/index.html</uri>\u0000.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 2","pages":"445-458"},"PeriodicalIF":2.3,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135182601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling Game Mechanics With Ceptre 用 Ceptre 建立游戏机制模型
IF 2.3 4区 计算机科学
IEEE Transactions on Games Pub Date : 2023-07-06 DOI: 10.1109/TG.2023.3292982
Chris Martens;Alexander Card;Henry Crain;Asha Khatri
{"title":"Modeling Game Mechanics With Ceptre","authors":"Chris Martens;Alexander Card;Henry Crain;Asha Khatri","doi":"10.1109/TG.2023.3292982","DOIUrl":"10.1109/TG.2023.3292982","url":null,"abstract":"Game description languages have a variety of uses, including formal reasoning about the emergent consequences of a game's mechanics, implementation of artificial intelligence decision making where the game's rules make up the space of possible actions, automated game and level generation, and game prototyping for the sake of low-time-investment design and tinkering. However, in practice, a new game description language has been invented for almost every new use case, without providing formal underpinnings that follow generalizable principles and can be reasoned about separately from the specific software implementation of the language. Ceptre is a language that attempts to break this pattern, based on an old idea known as multiset rewriting. This article describes the language formally, through example, and in a tutorial style, then demonstrates its use for writing formal specifications of game mechanics so that they may be interactively explored, queried, and analyzed in a computational framework. Ceptre allows designers to step through executions, interact with the mechanics from the standpoint of a player, run random simulated playthroughs, collect and analyze data from said playthroughs, and formally verify mathematical properties of the mechanics, and it has been used in a number of research projects since its inception, for applications such as procedural narrative generation, formal game modeling, and game AI.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 2","pages":"431-444"},"PeriodicalIF":2.3,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62570270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image Augmentation-Based Momentum Memory Intrinsic Reward for Sparse Reward Visual Scenes 基于图像增强的动量记忆内在奖励,用于稀疏奖励视觉场景
IF 1.7 4区 计算机科学
IEEE Transactions on Games Pub Date : 2023-06-20 DOI: 10.1109/TG.2023.3288042
Zheng Fang;Biao Zhao;Guizhong Liu
{"title":"Image Augmentation-Based Momentum Memory Intrinsic Reward for Sparse Reward Visual Scenes","authors":"Zheng Fang;Biao Zhao;Guizhong Liu","doi":"10.1109/TG.2023.3288042","DOIUrl":"https://doi.org/10.1109/TG.2023.3288042","url":null,"abstract":"Many real-life tasks can be abstracted as sparse reward visual scenes, which can make it difficult for an agent to accomplish tasks accepting only images and sparse reward. To address this problem, we split it into two parts: visual representation and sparse reward, and propose our novel framework, called image augmentation-based momentum memory intrinsic reward, which combines self-supervised representation learning with intrinsic motivation. For visual representation, we acquire a representation driven by a combination of image-augmented forward dynamics and reward. To handle sparse reward, we design a new type of intrinsic reward called momentum memory intrinsic reward, which uses the difference between the outputs from the current model (online network) and the historical model (target network) to indicate the agent's state familiarity. We evaluate our method on a visual navigation task with sparse reward in VizDoom and demonstrate that it achieves state-of-the-art performance in terms of sample efficiency. Our method is at least two times faster than existing methods and reaches a 100% success rate.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 3","pages":"509-517"},"PeriodicalIF":1.7,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PreGLAM: A Predictive Gameplay-Based Layered Affect Model PreGLAM: 基于游戏性的分层情感预测模型
IF 1.7 4区 计算机科学
IEEE Transactions on Games Pub Date : 2023-06-20 DOI: 10.1109/TG.2023.3287732
Cale Plut;Philippe Pasquier;Jeff Ens;Renaud Bougueng
{"title":"PreGLAM: A Predictive Gameplay-Based Layered Affect Model","authors":"Cale Plut;Philippe Pasquier;Jeff Ens;Renaud Bougueng","doi":"10.1109/TG.2023.3287732","DOIUrl":"https://doi.org/10.1109/TG.2023.3287732","url":null,"abstract":"In this article, we present the Predictive Gameplay-based Layered Affect Model (PreGLAM), an affective game spectator model that flexibly integrates into a game design process. PreGLAM combines elements of real-time player experience models and affective nonplayer-character models to output real-time estimated values for a spectator's valence, arousal, and tension during gameplay. Because tension is related to prospective events, PreGLAM attempts to predict future gameplay events. We implement and evaluate PreGLAM in a custom game \u0000<italic>Galactic Defense</i>\u0000, which we also describe. PreGLAM significantly outperforms a random walk time series in how accurately it matches ground-truth annotations and has comparable accuracy to state-of-the-art affect models.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 3","pages":"497-508"},"PeriodicalIF":1.7,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Call for Papers—IEEE Transactions on Games Special Issue on Human-Centered AI in Game Evaluation ieee游戏汇刊特刊:游戏评估中以人为中心的AI
IF 2.3 4区 计算机科学
IEEE Transactions on Games Pub Date : 2023-06-15 DOI: 10.1109/TG.2023.3283166
{"title":"Call for Papers—IEEE Transactions on Games Special Issue on Human-Centered AI in Game Evaluation","authors":"","doi":"10.1109/TG.2023.3283166","DOIUrl":"10.1109/TG.2023.3283166","url":null,"abstract":"","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"15 2","pages":"300-300"},"PeriodicalIF":2.3,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7782673/10153940/10153941.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44774517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Computational Intelligence Society Information IEEE计算智能学会信息
IF 2.3 4区 计算机科学
IEEE Transactions on Games Pub Date : 2023-06-15 DOI: 10.1109/TG.2023.3280651
{"title":"IEEE Computational Intelligence Society Information","authors":"","doi":"10.1109/TG.2023.3280651","DOIUrl":"https://doi.org/10.1109/TG.2023.3280651","url":null,"abstract":"","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"15 2","pages":"C3-C3"},"PeriodicalIF":2.3,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7782673/10153940/10153944.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68075989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信