MDDP:在多代理强化学习中从不同角度做出决策

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wei Li;Ziming Qiu;Shitong Shao;Aiguo Song
{"title":"MDDP:在多代理强化学习中从不同角度做出决策","authors":"Wei Li;Ziming Qiu;Shitong Shao;Aiguo Song","doi":"10.1109/TG.2023.3329376","DOIUrl":null,"url":null,"abstract":"Multiagent reinforcement learning (MARL) has made remarkable progress in recent years. However, in most MARL methods, agents share a policy or value network, which is easy to result in similar behaviors of agents, and thus, limits the flexibility of the method to handle complex tasks. To enhance the diversity of agent behaviors, we propose a novel method, making decisions from different perspectives (MDDP). This method enables agents to switch flexibly between different policy roles and make decisions from different perspectives, which can improve the adaptability of policy learning in complex scenarios. Specifically, in MDDP, we design a new self-attention and gated recurrent unit (GRU)-based dueling architecture network (SG-DAN) to estimate the individual \n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\n-values. SG-DAN contains two components: 1) the new self-attention-based role-switching network (SAR) and the capable GRU-based state value estimation network (GSE). SAR takes charge of action advantage estimation and GSE is responsible for state value estimation. Experimental results on the challenging \n<italic>StarCraft</i>\n II micromanagement benchmark not only verify the modeling reasonability of MDDP but also demonstrate its performance superiority over the related advanced approaches.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 3","pages":"621-634"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MDDP: Making Decisions From Different Perspectives in Multiagent Reinforcement Learning\",\"authors\":\"Wei Li;Ziming Qiu;Shitong Shao;Aiguo Song\",\"doi\":\"10.1109/TG.2023.3329376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiagent reinforcement learning (MARL) has made remarkable progress in recent years. However, in most MARL methods, agents share a policy or value network, which is easy to result in similar behaviors of agents, and thus, limits the flexibility of the method to handle complex tasks. To enhance the diversity of agent behaviors, we propose a novel method, making decisions from different perspectives (MDDP). This method enables agents to switch flexibly between different policy roles and make decisions from different perspectives, which can improve the adaptability of policy learning in complex scenarios. Specifically, in MDDP, we design a new self-attention and gated recurrent unit (GRU)-based dueling architecture network (SG-DAN) to estimate the individual \\n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\\n-values. SG-DAN contains two components: 1) the new self-attention-based role-switching network (SAR) and the capable GRU-based state value estimation network (GSE). SAR takes charge of action advantage estimation and GSE is responsible for state value estimation. Experimental results on the challenging \\n<italic>StarCraft</i>\\n II micromanagement benchmark not only verify the modeling reasonability of MDDP but also demonstrate its performance superiority over the related advanced approaches.\",\"PeriodicalId\":55977,\"journal\":{\"name\":\"IEEE Transactions on Games\",\"volume\":\"16 3\",\"pages\":\"621-634\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Games\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10304394/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10304394/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,多代理强化学习(MARL)取得了显著进展。然而,在大多数 MARL 方法中,代理共享一个策略或价值网络,这很容易导致代理行为相似,从而限制了该方法处理复杂任务的灵活性。为了增强代理行为的多样性,我们提出了一种新方法--从不同角度做出决策(MDDP)。这种方法能让代理在不同的政策角色之间灵活切换,并从不同的角度做出决策,从而提高复杂场景下政策学习的适应性。具体来说,在 MDDP 中,我们设计了一种新的基于自注意和门控递归单元(GRU)的决斗架构网络(SG-DAN)来估计单个 Q$ 值。SG-DAN 包含两个部分:1) 新的基于自我注意的角色切换网络(SAR)和基于门控递归单元的状态值估算网络(GSE)。SAR 负责行动优势估计,GSE 负责状态值估计。在极具挑战性的《星际争霸 II》微观管理基准上的实验结果不仅验证了 MDDP 的建模合理性,还证明了它在性能上优于相关的先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MDDP: Making Decisions From Different Perspectives in Multiagent Reinforcement Learning
Multiagent reinforcement learning (MARL) has made remarkable progress in recent years. However, in most MARL methods, agents share a policy or value network, which is easy to result in similar behaviors of agents, and thus, limits the flexibility of the method to handle complex tasks. To enhance the diversity of agent behaviors, we propose a novel method, making decisions from different perspectives (MDDP). This method enables agents to switch flexibly between different policy roles and make decisions from different perspectives, which can improve the adaptability of policy learning in complex scenarios. Specifically, in MDDP, we design a new self-attention and gated recurrent unit (GRU)-based dueling architecture network (SG-DAN) to estimate the individual $Q$ -values. SG-DAN contains two components: 1) the new self-attention-based role-switching network (SAR) and the capable GRU-based state value estimation network (GSE). SAR takes charge of action advantage estimation and GSE is responsible for state value estimation. Experimental results on the challenging StarCraft II micromanagement benchmark not only verify the modeling reasonability of MDDP but also demonstrate its performance superiority over the related advanced approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信