利用 DREAM 训练代理评估 Geister 中不完美信息的影响

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lucien Troillet;Kiminori Matsuzaki
{"title":"利用 DREAM 训练代理评估 Geister 中不完美信息的影响","authors":"Lucien Troillet;Kiminori Matsuzaki","doi":"10.1109/TG.2023.3324737","DOIUrl":null,"url":null,"abstract":"Imperfect information games (IIGs) are a popular subject in the field of artificial intelligence. In this study, we consider them and propose that they can be classified according to the impact and visualizability of the imperfect information. We use \n<italic>Geister</i>\n, a Board IIG, to create multiple variant games that we use as an abstraction for IIGs. We then train agents to play each variant using deep regret minimization with advantage baselines and model-free learning, a neural-network variation of counterfactual regret minimization. We observe the performance of our agents and use them to qualitatively assess the characteristics of our IIGs with regards to our proposed terminology.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 3","pages":"598-610"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Influence of Imperfect Information in Geister Using DREAM Trained Agents\",\"authors\":\"Lucien Troillet;Kiminori Matsuzaki\",\"doi\":\"10.1109/TG.2023.3324737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imperfect information games (IIGs) are a popular subject in the field of artificial intelligence. In this study, we consider them and propose that they can be classified according to the impact and visualizability of the imperfect information. We use \\n<italic>Geister</i>\\n, a Board IIG, to create multiple variant games that we use as an abstraction for IIGs. We then train agents to play each variant using deep regret minimization with advantage baselines and model-free learning, a neural-network variation of counterfactual regret minimization. We observe the performance of our agents and use them to qualitatively assess the characteristics of our IIGs with regards to our proposed terminology.\",\"PeriodicalId\":55977,\"journal\":{\"name\":\"IEEE Transactions on Games\",\"volume\":\"16 3\",\"pages\":\"598-610\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Games\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10286289/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10286289/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

不完全信息博弈(IIGs)是人工智能领域的一个热门话题。在本研究中,我们对它们进行了研究,并提出可以根据不完全信息的影响和可视化程度对它们进行分类。我们利用棋盘 IIG--Geister 创建了多个变体游戏,并将其作为 IIG 的抽象概念。然后,我们使用具有优势基线的深度遗憾最小化和无模型学习(一种反事实遗憾最小化的神经网络变体)来训练代理玩每个变体。我们观察了代理的表现,并根据我们提出的术语对 IIGs 的特点进行了定性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the Influence of Imperfect Information in Geister Using DREAM Trained Agents
Imperfect information games (IIGs) are a popular subject in the field of artificial intelligence. In this study, we consider them and propose that they can be classified according to the impact and visualizability of the imperfect information. We use Geister , a Board IIG, to create multiple variant games that we use as an abstraction for IIGs. We then train agents to play each variant using deep regret minimization with advantage baselines and model-free learning, a neural-network variation of counterfactual regret minimization. We observe the performance of our agents and use them to qualitatively assess the characteristics of our IIGs with regards to our proposed terminology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信