Aequationes Mathematicae最新文献

筛选
英文 中文
Homomorphisms from Functional Equations: The Goldie Equation, II 泛函方程的同态:Goldie方程,2
IF 0.9 3区 数学
Aequationes Mathematicae Pub Date : 2024-11-11 DOI: 10.1007/s00010-024-01130-9
N. H. Bingham, A. J. Ostaszewski
{"title":"Homomorphisms from Functional Equations: The Goldie Equation, II","authors":"N. H. Bingham,&nbsp;A. J. Ostaszewski","doi":"10.1007/s00010-024-01130-9","DOIUrl":"10.1007/s00010-024-01130-9","url":null,"abstract":"<div><p>This first of three sequels to <i>Homomorphisms from Functional equations: The Goldie equation</i> (Ostaszewski in Aequationes Math 90:427–448, 2016) by the second author—the second of the resulting quartet—starts from the Goldie functional equation arising in the general regular variation of our joint paper (Bingham et al. in J Math Anal Appl 483:123610, 2020). We extend the work there in two directions. First, we algebraicize the theory, by systematic use of certain groups—the <i>Popa groups</i> arising in earlier work by Popa, and their relatives the <i>Javor groups </i>. Secondly, we extend from the original context on the real line to multi-dimensional (or infinite-dimensional) settings.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 1","pages":"1 - 19"},"PeriodicalIF":0.9,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01130-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143554162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simple proof of the rationality of Takagi-like functions 高木类函数合理性的简单证明
IF 0.9 3区 数学
Aequationes Mathematicae Pub Date : 2024-11-04 DOI: 10.1007/s00010-024-01134-5
Yangyang Chen, Nankun Hong, Hongyuan Yu
{"title":"A simple proof of the rationality of Takagi-like functions","authors":"Yangyang Chen,&nbsp;Nankun Hong,&nbsp;Hongyuan Yu","doi":"10.1007/s00010-024-01134-5","DOIUrl":"10.1007/s00010-024-01134-5","url":null,"abstract":"<div><p>Takagi function is a well-known continuous but nowhere differentiable function defined over real numbers. The Takagi function maps rational numbers to themselves. In this note, by applying Euler’s theorem, we give a simple proof of this property for Takagi-like functions, a slight generalization of the Takagi function.\u0000</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 2","pages":"433 - 437"},"PeriodicalIF":0.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143871145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On strongly m-convex stochastic processes 关于强m凸随机过程
IF 0.9 3区 数学
Aequationes Mathematicae Pub Date : 2024-10-30 DOI: 10.1007/s00010-024-01128-3
Jaya Bisht, Rohan Mishra, Abdelouahed Hamdi
{"title":"On strongly m-convex stochastic processes","authors":"Jaya Bisht,&nbsp;Rohan Mishra,&nbsp;Abdelouahed Hamdi","doi":"10.1007/s00010-024-01128-3","DOIUrl":"10.1007/s00010-024-01128-3","url":null,"abstract":"<div><p>In this paper, we introduce the concept of strongly <i>m</i>-convex stochastic processes and present some basic properties of these stochastic processes. We derive Hermite-Hadamard type inequalities for stochastic processes whose first derivatives in absolute values are strongly <i>m</i>-convex. The results presented in this paper are a generalization and extension of previously known results.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 2","pages":"655 - 667"},"PeriodicalIF":0.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01128-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143871394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maker-Breaker resolving game played on corona products of graphs Maker-Breaker解决游戏在电晕产品上玩的图形
IF 0.9 3区 数学
Aequationes Mathematicae Pub Date : 2024-10-24 DOI: 10.1007/s00010-024-01132-7
Tijo James, Sandi Klavžar, Dorota Kuziak, Savitha K. S, Ambat Vijayakumar
{"title":"Maker-Breaker resolving game played on corona products of graphs","authors":"Tijo James,&nbsp;Sandi Klavžar,&nbsp;Dorota Kuziak,&nbsp;Savitha K. S,&nbsp;Ambat Vijayakumar","doi":"10.1007/s00010-024-01132-7","DOIUrl":"10.1007/s00010-024-01132-7","url":null,"abstract":"<div><p>The Maker-Breaker resolving game is a game played on a graph <i>G</i> by Resolver and Spoiler. The players taking turns alternately in which each player selects a not yet played vertex of <i>G</i>. The goal of Resolver is to select all the vertices in a resolving set of <i>G</i>, while that of Spoiler is to prevent this from happening. The outcome <i>o</i>(<i>G</i>) of the game played is one of <span>(mathcal {R})</span>, <span>(mathcal {S})</span>, and <span>(mathcal {N})</span>, where <span>(o(G)=mathcal {R})</span> (resp. <span>(o(G)=mathcal {S})</span>), if Resolver (resp. Spoiler) has a winning strategy no matter who starts the game, and <span>(o(G)=mathcal {N})</span>, if the first player has a winning strategy. In this paper, the game is investigated on corona products <span>(Godot H)</span> of graphs <i>G</i> and <i>H</i>. It is proved that if <span>(o(H)in {mathcal {N}, mathcal {S}})</span>, then <span>(o(Godot H) = mathcal {S})</span>. No such result is possible under the assumption <span>(o(H) = mathcal {R})</span>. It is proved that <span>(o(Godot P_k) = mathcal {S})</span> if <span>(k=5)</span>, otherwise <span>(o(Godot P_k) = mathcal {R})</span>, and that <span>(o(Godot C_k) = mathcal {S})</span> if <span>(k=3)</span>, otherwise <span>(o(Godot C_k) = mathcal {R})</span>. Several results are also given on corona products in which the second factor is of diameter at most 2.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"1221 - 1233"},"PeriodicalIF":0.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01132-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144073827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous inverse ambiguous functions on Lie groups 李群上的连续逆二义函数
IF 0.9 3区 数学
Aequationes Mathematicae Pub Date : 2024-10-22 DOI: 10.1007/s00010-024-01131-8
David Schmitz, Sadman Rahman, Anthony Kindness
{"title":"Continuous inverse ambiguous functions on Lie groups","authors":"David Schmitz,&nbsp;Sadman Rahman,&nbsp;Anthony Kindness","doi":"10.1007/s00010-024-01131-8","DOIUrl":"10.1007/s00010-024-01131-8","url":null,"abstract":"<div><p>In Schmitz (Aequ Math 91:373–389, 2017), the first author defines an inverse ambiguous function on a group <i>G</i> to be a bijective function <span>(f: G rightarrow G)</span> satisfying the functional equation <span>(f^{-1}(x) = f(x^{-1}))</span> for all <span>(x in G)</span>. In this paper, we investigate the existence of continuous inverse ambiguous functions on various Lie groups. In particular, we look at tori, elliptic curves over various fields, vector spaces, additive matrix groups, and multiplicative matrix groups.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"1357 - 1369"},"PeriodicalIF":0.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144073950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iteration of a class of multi-plateau mappings 一类多平台映射的迭代
IF 0.9 3区 数学
Aequationes Mathematicae Pub Date : 2024-10-22 DOI: 10.1007/s00010-024-01129-2
Jiaju Huang, Liu Liu, Jialing Zhang
{"title":"Iteration of a class of multi-plateau mappings","authors":"Jiaju Huang,&nbsp;Liu Liu,&nbsp;Jialing Zhang","doi":"10.1007/s00010-024-01129-2","DOIUrl":"10.1007/s00010-024-01129-2","url":null,"abstract":"<div><p>Iteration is one of the most important topics in the field of functional equations, which is also concerned with dynamical systems and operator theory. In this paper we discuss a class of multi-plateau mappings with finitely many P-intervals whose range crosses the diagonals and classifies them into four classes. For each class the properties of all the orbits of the two endpoints of the P-intervals are investigated in a similar way as for symbolic dynamical systems, and finally the iteration of these multi-plateau mappings are given.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"1065 - 1084"},"PeriodicalIF":0.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144073949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Jensen’s inequality involving divided differences of convex functions 关于凸函数的可分差Jensen不等式
IF 0.9 3区 数学
Aequationes Mathematicae Pub Date : 2024-10-22 DOI: 10.1007/s00010-024-01127-4
G. Aras-Gazić, Julije Jakšetić, Rozarija Mikić, J. Pečarić
{"title":"On Jensen’s inequality involving divided differences of convex functions","authors":"G. Aras-Gazić,&nbsp;Julije Jakšetić,&nbsp;Rozarija Mikić,&nbsp;J. Pečarić","doi":"10.1007/s00010-024-01127-4","DOIUrl":"10.1007/s00010-024-01127-4","url":null,"abstract":"<div><p>This research is motivated by Zwick’s work on the convexity of divided differences and one more recent result on this topis with the aim of extending the use of the Edmundson-Lah-Ribaric inequality. Applications to Wulbert’s result for 3-convex functions and extensions to functions of two variables are provided in the paper.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"1125 - 1141"},"PeriodicalIF":0.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144073943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clique trees with a given zero forcing number maximizing the (A_alpha )-spectral radius 具有给定零强迫数最大化(A_alpha ) -谱半径的团树
IF 0.9 3区 数学
Aequationes Mathematicae Pub Date : 2024-10-20 DOI: 10.1007/s00010-024-01125-6
Long Jin, Jianxi Li, Yuan Hou
{"title":"Clique trees with a given zero forcing number maximizing the (A_alpha )-spectral radius","authors":"Long Jin,&nbsp;Jianxi Li,&nbsp;Yuan Hou","doi":"10.1007/s00010-024-01125-6","DOIUrl":"10.1007/s00010-024-01125-6","url":null,"abstract":"<div><p>The <span>(A_alpha )</span>-spectral radius of a graph <i>G</i> is the largest eigenvalue of <span>(A_alpha (G):=alpha D(G)+(1-alpha ) A(G))</span> for any real number <span>(alpha in [0,1])</span>, where <i>A</i>(<i>G</i>) and <i>D</i>(<i>G</i>) are the adjacency matrix and the degree matrix of <i>G</i>, respectively. In this paper, we settle the problem of characterizing graphs which attain the maximum <span>(A_alpha )</span>-spectral radius over <span>({mathscr {B}}(n, k))</span>, the class of clique trees of order <i>n</i> with a zero forcing number <i>k</i>, where <span>(0 le alpha &lt;1)</span>, <span>(leftlfloor frac{n}{2}rightrfloor +1 le k le n-1)</span> and each block is a clique of size at least 3. Moreover, an estimation on the <span>(A_alpha )</span>-spectral radius of the extremal graph is also included. Our result covers a recent result of Das (2023).</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 2","pages":"335 - 350"},"PeriodicalIF":0.9,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143871397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The number of independent sets in bipartite graphs and benzenoids 二部图和苯类中独立集的数目
IF 0.9 3区 数学
Aequationes Mathematicae Pub Date : 2024-10-07 DOI: 10.1007/s00010-024-01124-7
Michael Han, Sycamore Herlihy, Kirsti Kuenzel, Daniel Martin, Rachel Schmidt
{"title":"The number of independent sets in bipartite graphs and benzenoids","authors":"Michael Han,&nbsp;Sycamore Herlihy,&nbsp;Kirsti Kuenzel,&nbsp;Daniel Martin,&nbsp;Rachel Schmidt","doi":"10.1007/s00010-024-01124-7","DOIUrl":"10.1007/s00010-024-01124-7","url":null,"abstract":"<div><p>Given a graph <i>G</i>, we study the number of independent sets in <i>G</i>, denoted <i>i</i>(<i>G</i>). This parameter is known as both the Merrifield–Simmons index of a graph as well as the Fibonacci number of a graph. In this paper, we give general bounds for <i>i</i>(<i>G</i>) when <i>G</i> is bipartite and we give its exact value when <i>G</i> is a balanced caterpillar. We improve upon a known upper bound for <i>i</i>(<i>T</i>) when <i>T</i> is a tree, and study a conjecture that all but finitely many positive integers represent <i>i</i>(<i>T</i>) for some tree <i>T</i>. We also give a recursive formula for finding <i>i</i>(<i>G</i>) when <i>G</i> is a linear chain of hexagons and use this to study the number of independent sets in benzenoids. We also answer a conjecture relating <i>i</i>(<i>G</i>) when <i>G</i> is a linear chain of hexagons and the number of <span>(2times n)</span> matrices containing a 1 in the top left entry where all entries are integer values and adjacent entries differ by at most 1.\u0000</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"1175 - 1195"},"PeriodicalIF":0.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01124-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144074142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
System of equations and configurations in the Euclidean space 欧几里得空间中的方程组和构型
IF 0.9 3区 数学
Aequationes Mathematicae Pub Date : 2024-10-04 DOI: 10.1007/s00010-024-01114-9
Annachiara Korchmaros
{"title":"System of equations and configurations in the Euclidean space","authors":"Annachiara Korchmaros","doi":"10.1007/s00010-024-01114-9","DOIUrl":"10.1007/s00010-024-01114-9","url":null,"abstract":"<div><p>In the 3-dimensional Euclidean space <span>({textbf{E}}^3)</span>, fix six pairwise distinct points </p><div><div><span>$$begin{aligned} begin{array}{ccc} A=(a_1,a_2,a_3), &amp; B=(b_1,b_2,b_3), &amp; C=(c_1,c_2,c_3), D=(d_1,d_2,d_3), &amp; E=(e_1,e_2,e_3), &amp; F=(f_1,f_2,f_3) end{array} end{aligned}$$</span></div></div><p>together with two further points <span>(X^*=(x_1^*,x_2^*,x_3^*))</span> and <span>(Y^*=(y_1^*,y_2^*,y_3^*))</span> in <span>({textbf{E}}^3)</span>. We show that System <span>((*))</span> consisting of the following six equations in the unknowns <span>(X=(x_1,x_2,x_3))</span> and <span>(Y=(y_1,y_2,y_3))</span></p><div><div><span>$$begin{aligned} frac{1}{Vert X-TVert ^2} +frac{1}{Vert Y-TVert ^2}=frac{1}{Vert X^*-TVert ^2} +frac{1}{Vert Y^*-TVert ^2}, quad Tin {A,B,C,D,E,F} end{aligned}$$</span></div><div>\u0000 (1)\u0000 </div></div><p>has only finitely many solutions provided that both of the following two conditions are satisfied: </p><ol>\u0000 <li>\u0000 <span>(i)</span>\u0000 \u0000 <p>No four of the fixed points <i>A</i>, <i>B</i>, <i>C</i>, <i>D</i>, <i>E</i>, <i>F</i> are coplanar;</p>\u0000 \u0000 </li>\u0000 <li>\u0000 <span>(ii)</span>\u0000 \u0000 <p>No four of the six spheres of center <i>T</i> and radius <span>(1/sqrt{k_T})</span> with </p><div><div><span>$$begin{aligned} k_T=frac{1}{Vert X^*-TVert ^2} +frac{1}{Vert Y^*-TVert ^2} end{aligned}$$</span></div><div>\u0000 (2)\u0000 </div></div><p> share a common point in <span>({textbf{E}}^3)</span>.</p>\u0000 \u0000 </li>\u0000 </ol><p> Furthermore, we exhibit configurations <span>(ABCDEFX^*Y^*)</span>, showing that (i) is also necessary. This result is an improvement on [2, Theorem 1] where the finiteness of solutions of System <span>((*))</span> was only ensured for sufficiently generic choices of the points <span>(A,B,ldots ,F,X^*,Y^*.)</span> The extended System <span>((**))</span> associated to System <span>((*))</span> consists of seven equations (1) where <span>(Tin {A,B,C,D,E,E,F,G})</span> with a further point <span>(G=(g_1,g_2,g_3)in {textbf{E}}^3)</span>. We show that if (i) and (ii) hold for <span>(Tin {A,B,C,D,E,F})</span> and the associated extended System <span>((**))</span> has some solutions other than <span>((X^*,Y^*))</span> and <span>((Y^*,X^*))</span>, then <i>G</i> lies on a real affine surface only depending on <span>({A,B,ldots ,F})</span>. This result proves [2, Conjecture 1]. Motivation for studying the above problems comes from applications to genetics; see [2].</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"1003 - 1023"},"PeriodicalIF":0.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01114-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144074134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信