G. Aras-Gazić, Julije Jakšetić, Rozarija Mikić, J. Pečarić
{"title":"关于凸函数的可分差Jensen不等式","authors":"G. Aras-Gazić, Julije Jakšetić, Rozarija Mikić, J. Pečarić","doi":"10.1007/s00010-024-01127-4","DOIUrl":null,"url":null,"abstract":"<div><p>This research is motivated by Zwick’s work on the convexity of divided differences and one more recent result on this topis with the aim of extending the use of the Edmundson-Lah-Ribaric inequality. Applications to Wulbert’s result for 3-convex functions and extensions to functions of two variables are provided in the paper.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"1125 - 1141"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Jensen’s inequality involving divided differences of convex functions\",\"authors\":\"G. Aras-Gazić, Julije Jakšetić, Rozarija Mikić, J. Pečarić\",\"doi\":\"10.1007/s00010-024-01127-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research is motivated by Zwick’s work on the convexity of divided differences and one more recent result on this topis with the aim of extending the use of the Edmundson-Lah-Ribaric inequality. Applications to Wulbert’s result for 3-convex functions and extensions to functions of two variables are provided in the paper.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"99 3\",\"pages\":\"1125 - 1141\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01127-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01127-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
这项研究的动机是Zwick在可分差的凸性方面的工作,以及最近在这个主题上的一个结果,目的是扩展edmundson - la - ribaric不等式的使用。本文给出了关于3-凸函数的Wulbert结果及其在二元函数上的推广应用。
On Jensen’s inequality involving divided differences of convex functions
This research is motivated by Zwick’s work on the convexity of divided differences and one more recent result on this topis with the aim of extending the use of the Edmundson-Lah-Ribaric inequality. Applications to Wulbert’s result for 3-convex functions and extensions to functions of two variables are provided in the paper.
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.