二部图和苯类中独立集的数目

IF 0.7 3区 数学 Q2 MATHEMATICS
Michael Han, Sycamore Herlihy, Kirsti Kuenzel, Daniel Martin, Rachel Schmidt
{"title":"二部图和苯类中独立集的数目","authors":"Michael Han,&nbsp;Sycamore Herlihy,&nbsp;Kirsti Kuenzel,&nbsp;Daniel Martin,&nbsp;Rachel Schmidt","doi":"10.1007/s00010-024-01124-7","DOIUrl":null,"url":null,"abstract":"<div><p>Given a graph <i>G</i>, we study the number of independent sets in <i>G</i>, denoted <i>i</i>(<i>G</i>). This parameter is known as both the Merrifield–Simmons index of a graph as well as the Fibonacci number of a graph. In this paper, we give general bounds for <i>i</i>(<i>G</i>) when <i>G</i> is bipartite and we give its exact value when <i>G</i> is a balanced caterpillar. We improve upon a known upper bound for <i>i</i>(<i>T</i>) when <i>T</i> is a tree, and study a conjecture that all but finitely many positive integers represent <i>i</i>(<i>T</i>) for some tree <i>T</i>. We also give a recursive formula for finding <i>i</i>(<i>G</i>) when <i>G</i> is a linear chain of hexagons and use this to study the number of independent sets in benzenoids. We also answer a conjecture relating <i>i</i>(<i>G</i>) when <i>G</i> is a linear chain of hexagons and the number of <span>\\(2\\times n\\)</span> matrices containing a 1 in the top left entry where all entries are integer values and adjacent entries differ by at most 1.\n</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"1175 - 1195"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01124-7.pdf","citationCount":"0","resultStr":"{\"title\":\"The number of independent sets in bipartite graphs and benzenoids\",\"authors\":\"Michael Han,&nbsp;Sycamore Herlihy,&nbsp;Kirsti Kuenzel,&nbsp;Daniel Martin,&nbsp;Rachel Schmidt\",\"doi\":\"10.1007/s00010-024-01124-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a graph <i>G</i>, we study the number of independent sets in <i>G</i>, denoted <i>i</i>(<i>G</i>). This parameter is known as both the Merrifield–Simmons index of a graph as well as the Fibonacci number of a graph. In this paper, we give general bounds for <i>i</i>(<i>G</i>) when <i>G</i> is bipartite and we give its exact value when <i>G</i> is a balanced caterpillar. We improve upon a known upper bound for <i>i</i>(<i>T</i>) when <i>T</i> is a tree, and study a conjecture that all but finitely many positive integers represent <i>i</i>(<i>T</i>) for some tree <i>T</i>. We also give a recursive formula for finding <i>i</i>(<i>G</i>) when <i>G</i> is a linear chain of hexagons and use this to study the number of independent sets in benzenoids. We also answer a conjecture relating <i>i</i>(<i>G</i>) when <i>G</i> is a linear chain of hexagons and the number of <span>\\\\(2\\\\times n\\\\)</span> matrices containing a 1 in the top left entry where all entries are integer values and adjacent entries differ by at most 1.\\n</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"99 3\",\"pages\":\"1175 - 1195\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01124-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01124-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01124-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定图G,研究图G中独立集合的个数,记为i(G)。这个参数既被称为图的Merrifield-Simmons索引,也被称为图的斐波那契数。本文给出了当G为二部时i(G)的一般界,并给出了当G为平衡履带时它的精确值。我们改进了已知的当T为树时i(T)的上界,并研究了除有限多个正整数外的所有正整数都表示某树T的i(T)的一个猜想。我们还给出了当G为六边形线性链时求i(G)的递推公式,并用它来研究了类苯胺中独立集的个数。我们还回答了一个关于i(G)的猜想,当G是六边形的线性链,并且在左上角的条目中包含1的\(2\times n\)矩阵的数量,其中所有条目都是整数值,相邻条目最多相差1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The number of independent sets in bipartite graphs and benzenoids

Given a graph G, we study the number of independent sets in G, denoted i(G). This parameter is known as both the Merrifield–Simmons index of a graph as well as the Fibonacci number of a graph. In this paper, we give general bounds for i(G) when G is bipartite and we give its exact value when G is a balanced caterpillar. We improve upon a known upper bound for i(T) when T is a tree, and study a conjecture that all but finitely many positive integers represent i(T) for some tree T. We also give a recursive formula for finding i(G) when G is a linear chain of hexagons and use this to study the number of independent sets in benzenoids. We also answer a conjecture relating i(G) when G is a linear chain of hexagons and the number of \(2\times n\) matrices containing a 1 in the top left entry where all entries are integer values and adjacent entries differ by at most 1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信