System of equations and configurations in the Euclidean space

IF 0.9 3区 数学 Q2 MATHEMATICS
Annachiara Korchmaros
{"title":"System of equations and configurations in the Euclidean space","authors":"Annachiara Korchmaros","doi":"10.1007/s00010-024-01114-9","DOIUrl":null,"url":null,"abstract":"<div><p>In the 3-dimensional Euclidean space <span>\\({\\textbf{E}}^3\\)</span>, fix six pairwise distinct points </p><div><div><span>$$\\begin{aligned} \\begin{array}{ccc} A=(a_1,a_2,a_3), &amp; B=(b_1,b_2,b_3), &amp; C=(c_1,c_2,c_3), \\\\ D=(d_1,d_2,d_3), &amp; E=(e_1,e_2,e_3), &amp; F=(f_1,f_2,f_3) \\end{array} \\end{aligned}$$</span></div></div><p>together with two further points <span>\\(X^*=(x_1^*,x_2^*,x_3^*)\\)</span> and <span>\\(Y^*=(y_1^*,y_2^*,y_3^*)\\)</span> in <span>\\({\\textbf{E}}^3\\)</span>. We show that System <span>\\((*)\\)</span> consisting of the following six equations in the unknowns <span>\\(X=(x_1,x_2,x_3)\\)</span> and <span>\\(Y=(y_1,y_2,y_3)\\)</span></p><div><div><span>$$\\begin{aligned} \\frac{1}{\\Vert X-T\\Vert ^2} +\\frac{1}{\\Vert Y-T\\Vert ^2}=\\frac{1}{\\Vert X^*-T\\Vert ^2} +\\frac{1}{\\Vert Y^*-T\\Vert ^2}, \\quad T\\in \\{A,B,C,D,E,F\\} \\end{aligned}$$</span></div><div>\n (1)\n </div></div><p>has only finitely many solutions provided that both of the following two conditions are satisfied: </p><ol>\n <li>\n <span>(i)</span>\n \n <p>No four of the fixed points <i>A</i>, <i>B</i>, <i>C</i>, <i>D</i>, <i>E</i>, <i>F</i> are coplanar;</p>\n \n </li>\n <li>\n <span>(ii)</span>\n \n <p>No four of the six spheres of center <i>T</i> and radius <span>\\(1/\\sqrt{k_T}\\)</span> with </p><div><div><span>$$\\begin{aligned} k_T=\\frac{1}{\\Vert X^*-T\\Vert ^2} +\\frac{1}{\\Vert Y^*-T\\Vert ^2} \\end{aligned}$$</span></div><div>\n (2)\n </div></div><p> share a common point in <span>\\({\\textbf{E}}^3\\)</span>.</p>\n \n </li>\n </ol><p> Furthermore, we exhibit configurations <span>\\(ABCDEFX^*Y^*\\)</span>, showing that (i) is also necessary. This result is an improvement on [2, Theorem 1] where the finiteness of solutions of System <span>\\((*)\\)</span> was only ensured for sufficiently generic choices of the points <span>\\(A,B,\\ldots ,F,X^*,Y^*.\\)</span> The extended System <span>\\((**)\\)</span> associated to System <span>\\((*)\\)</span> consists of seven equations (1) where <span>\\(T\\in \\{A,B,C,D,E,E,F,G\\}\\)</span> with a further point <span>\\(G=(g_1,g_2,g_3)\\in {\\textbf{E}}^3\\)</span>. We show that if (i) and (ii) hold for <span>\\(T\\in \\{A,B,C,D,E,F\\}\\)</span> and the associated extended System <span>\\((**)\\)</span> has some solutions other than <span>\\((X^*,Y^*)\\)</span> and <span>\\((Y^*,X^*)\\)</span>, then <i>G</i> lies on a real affine surface only depending on <span>\\(\\{A,B,\\ldots ,F\\}\\)</span>. This result proves [2, Conjecture 1]. Motivation for studying the above problems comes from applications to genetics; see [2].</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"1003 - 1023"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01114-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01114-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the 3-dimensional Euclidean space \({\textbf{E}}^3\), fix six pairwise distinct points

$$\begin{aligned} \begin{array}{ccc} A=(a_1,a_2,a_3), & B=(b_1,b_2,b_3), & C=(c_1,c_2,c_3), \\ D=(d_1,d_2,d_3), & E=(e_1,e_2,e_3), & F=(f_1,f_2,f_3) \end{array} \end{aligned}$$

together with two further points \(X^*=(x_1^*,x_2^*,x_3^*)\) and \(Y^*=(y_1^*,y_2^*,y_3^*)\) in \({\textbf{E}}^3\). We show that System \((*)\) consisting of the following six equations in the unknowns \(X=(x_1,x_2,x_3)\) and \(Y=(y_1,y_2,y_3)\)

$$\begin{aligned} \frac{1}{\Vert X-T\Vert ^2} +\frac{1}{\Vert Y-T\Vert ^2}=\frac{1}{\Vert X^*-T\Vert ^2} +\frac{1}{\Vert Y^*-T\Vert ^2}, \quad T\in \{A,B,C,D,E,F\} \end{aligned}$$
(1)

has only finitely many solutions provided that both of the following two conditions are satisfied:

  1. (i)

    No four of the fixed points ABCDEF are coplanar;

  2. (ii)

    No four of the six spheres of center T and radius \(1/\sqrt{k_T}\) with

    $$\begin{aligned} k_T=\frac{1}{\Vert X^*-T\Vert ^2} +\frac{1}{\Vert Y^*-T\Vert ^2} \end{aligned}$$
    (2)

    share a common point in \({\textbf{E}}^3\).

Furthermore, we exhibit configurations \(ABCDEFX^*Y^*\), showing that (i) is also necessary. This result is an improvement on [2, Theorem 1] where the finiteness of solutions of System \((*)\) was only ensured for sufficiently generic choices of the points \(A,B,\ldots ,F,X^*,Y^*.\) The extended System \((**)\) associated to System \((*)\) consists of seven equations (1) where \(T\in \{A,B,C,D,E,E,F,G\}\) with a further point \(G=(g_1,g_2,g_3)\in {\textbf{E}}^3\). We show that if (i) and (ii) hold for \(T\in \{A,B,C,D,E,F\}\) and the associated extended System \((**)\) has some solutions other than \((X^*,Y^*)\) and \((Y^*,X^*)\), then G lies on a real affine surface only depending on \(\{A,B,\ldots ,F\}\). This result proves [2, Conjecture 1]. Motivation for studying the above problems comes from applications to genetics; see [2].

欧几里得空间中的方程组和构型
在三维欧几里得空间\({\textbf{E}}^3\)中,将六个成对不同的点$$\begin{aligned} \begin{array}{ccc} A=(a_1,a_2,a_3), & B=(b_1,b_2,b_3), & C=(c_1,c_2,c_3), \\ D=(d_1,d_2,d_3), & E=(e_1,e_2,e_3), & F=(f_1,f_2,f_3) \end{array} \end{aligned}$$与\({\textbf{E}}^3\)中的另外两个点\(X^*=(x_1^*,x_2^*,x_3^*)\)和\(Y^*=(y_1^*,y_2^*,y_3^*)\)固定在一起。我们证明了由以下六个未知数\(X=(x_1,x_2,x_3)\)和\(Y=(y_1,y_2,y_3)\)$$\begin{aligned} \frac{1}{\Vert X-T\Vert ^2} +\frac{1}{\Vert Y-T\Vert ^2}=\frac{1}{\Vert X^*-T\Vert ^2} +\frac{1}{\Vert Y^*-T\Vert ^2}, \quad T\in \{A,B,C,D,E,F\} \end{aligned}$$(1)中的方程组成的系统\((*)\)只有在同时满足以下两个条件下才有有限多个解:(i)不动点A、B、C、D、E、F中没有四个共面;(ii)以$$\begin{aligned} k_T=\frac{1}{\Vert X^*-T\Vert ^2} +\frac{1}{\Vert Y^*-T\Vert ^2} \end{aligned}$$为圆心,半径为\(1/\sqrt{k_T}\)(2)的六个球体中,没有四个球体在\({\textbf{E}}^3\)上有一个共同点。此外,我们展示了配置\(ABCDEFX^*Y^*\),表明(i)也是必要的。这个结果是对[2,定理1]的改进,其中系统\((*)\)解的有限性仅在点\(A,B,\ldots ,F,X^*,Y^*.\)的充分一般选择下才得到保证。与系统\((*)\)相关的扩展系统\((**)\)由七个方程(1)组成,其中\(T\in \{A,B,C,D,E,E,F,G\}\)与另一个点\(G=(g_1,g_2,g_3)\in {\textbf{E}}^3\)。我们证明了如果(i)和(ii)对\(T\in \{A,B,C,D,E,F\}\)成立,并且相关的扩展系统\((**)\)有除\((X^*,Y^*)\)和\((Y^*,X^*)\)之外的解,则G只依赖于\(\{A,B,\ldots ,F\}\)在一个实仿射表面上。这个结果证明了[2,猜想1]。研究上述问题的动力来自于遗传学的应用;参见[2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信