Clique trees with a given zero forcing number maximizing the \(A_\alpha \)-spectral radius

IF 0.9 3区 数学 Q2 MATHEMATICS
Long Jin, Jianxi Li, Yuan Hou
{"title":"Clique trees with a given zero forcing number maximizing the \\(A_\\alpha \\)-spectral radius","authors":"Long Jin,&nbsp;Jianxi Li,&nbsp;Yuan Hou","doi":"10.1007/s00010-024-01125-6","DOIUrl":null,"url":null,"abstract":"<div><p>The <span>\\(A_\\alpha \\)</span>-spectral radius of a graph <i>G</i> is the largest eigenvalue of <span>\\(A_\\alpha (G):=\\alpha D(G)+(1-\\alpha ) A(G)\\)</span> for any real number <span>\\(\\alpha \\in [0,1]\\)</span>, where <i>A</i>(<i>G</i>) and <i>D</i>(<i>G</i>) are the adjacency matrix and the degree matrix of <i>G</i>, respectively. In this paper, we settle the problem of characterizing graphs which attain the maximum <span>\\(A_\\alpha \\)</span>-spectral radius over <span>\\({\\mathscr {B}}(n, k)\\)</span>, the class of clique trees of order <i>n</i> with a zero forcing number <i>k</i>, where <span>\\(0 \\le \\alpha &lt;1\\)</span>, <span>\\(\\left\\lfloor \\frac{n}{2}\\right\\rfloor +1 \\le k \\le n-1\\)</span> and each block is a clique of size at least 3. Moreover, an estimation on the <span>\\(A_\\alpha \\)</span>-spectral radius of the extremal graph is also included. Our result covers a recent result of Das (2023).</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 2","pages":"335 - 350"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01125-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The \(A_\alpha \)-spectral radius of a graph G is the largest eigenvalue of \(A_\alpha (G):=\alpha D(G)+(1-\alpha ) A(G)\) for any real number \(\alpha \in [0,1]\), where A(G) and D(G) are the adjacency matrix and the degree matrix of G, respectively. In this paper, we settle the problem of characterizing graphs which attain the maximum \(A_\alpha \)-spectral radius over \({\mathscr {B}}(n, k)\), the class of clique trees of order n with a zero forcing number k, where \(0 \le \alpha <1\), \(\left\lfloor \frac{n}{2}\right\rfloor +1 \le k \le n-1\) and each block is a clique of size at least 3. Moreover, an estimation on the \(A_\alpha \)-spectral radius of the extremal graph is also included. Our result covers a recent result of Das (2023).

具有给定零强迫数最大化\(A_\alpha \) -谱半径的团树
图G的\(A_\alpha \) -谱半径是任意实数\(\alpha \in [0,1]\)的\(A_\alpha (G):=\alpha D(G)+(1-\alpha ) A(G)\)的最大特征值,其中a (G)和D(G)分别是G的邻接矩阵和度矩阵。在本文中,我们解决了在\({\mathscr {B}}(n, k)\)上达到最大\(A_\alpha \) -谱半径的图的刻画问题,这类n阶的团树具有零强迫数k,其中\(0 \le \alpha <1\), \(\left\lfloor \frac{n}{2}\right\rfloor +1 \le k \le n-1\)和每个块是大小至少为3的团。此外,还对极值图的\(A_\alpha \) -谱半径进行了估计。我们的结果涵盖了Das(2023)的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信