Journal of Geometry and Physics最新文献

筛选
英文 中文
New invariants of singularities in terms of higher Nash blow-up local algebras 高纳什爆破局部代数下奇点的新不变量
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-07-11 DOI: 10.1016/j.geomphys.2025.105592
Shuanghe Fan , Naveed Hussain , Stephen S.-T. Yau , Huaiqing Zuo
{"title":"New invariants of singularities in terms of higher Nash blow-up local algebras","authors":"Shuanghe Fan ,&nbsp;Naveed Hussain ,&nbsp;Stephen S.-T. Yau ,&nbsp;Huaiqing Zuo","doi":"10.1016/j.geomphys.2025.105592","DOIUrl":"10.1016/j.geomphys.2025.105592","url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> be an isolated hypersurface singularity. In our previous work, we introduced a series of new local algebras called higher Nash blow-up local algebras associated with <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. Thus many new invariants were introduced from these local algebras of <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. We conjectured that singularities can be distinguished by a finite subset of these invariants. Furthermore, we proposed a generalized Halperin Conjecture. In this paper, we determine these invariants for simple curve singularities. As a result, we verify our conjecture for simple curve singularities. In the proof, we concretely compute the new invariants of simple curve singularities. Moreover, we verify the generalized Halperin Conjecture in some new cases.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105592"},"PeriodicalIF":1.6,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gluing formulae for heat kernels 热核的粘接公式
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-07-11 DOI: 10.1016/j.geomphys.2025.105594
Pavel Mnev , Konstantin Wernli
{"title":"Gluing formulae for heat kernels","authors":"Pavel Mnev ,&nbsp;Konstantin Wernli","doi":"10.1016/j.geomphys.2025.105594","DOIUrl":"10.1016/j.geomphys.2025.105594","url":null,"abstract":"<div><div>We state and prove two gluing formulae for the heat kernel of the Laplacian on a Riemannian manifold of the form <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mo>∪</mo></mrow><mrow><mi>γ</mi></mrow></msub><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We present several examples.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105594"},"PeriodicalIF":1.6,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144695263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twins in Kähler and Sasaki geometry 双胞胎在Kähler和佐佐木几何
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-07-09 DOI: 10.1016/j.geomphys.2025.105591
Charles P. Boyer , Hongnian Huang , Eveline Legendre , Christina W. Tønnesen-Friedman
{"title":"Twins in Kähler and Sasaki geometry","authors":"Charles P. Boyer ,&nbsp;Hongnian Huang ,&nbsp;Eveline Legendre ,&nbsp;Christina W. Tønnesen-Friedman","doi":"10.1016/j.geomphys.2025.105591","DOIUrl":"10.1016/j.geomphys.2025.105591","url":null,"abstract":"<div><div>We introduce the notions of weighted extremal Kähler twins together with the related notion of extremal Sasaki twins. In the Kähler setting this leads to a generalization of the twinning phenomenon appearing among LeBrun's strongly Hermitian solutions to the Einstein-Maxwell equations on the first Hirzebruch surface <span><span>[36]</span></span> to weighted extremal metrics on Hirzebruch surfaces in general. We discover that many twins appear and that this can be viewed in the Sasaki setting as a case where we have more than one extremal ray in the Sasaki cone even when we do not allow changes within the isotopy class. We also study extremal Sasaki twins directly in the Sasaki setting with a main focus on the toric Sasaki case.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105591"},"PeriodicalIF":1.6,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geodesic causality in Kerr spacetimes with |a| ≥ M 具有|和| ≥ 的Kerr时空测地线因果关系
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-07-08 DOI: 10.1016/j.geomphys.2025.105589
Giulio Sanzeni , Karim Mosani
{"title":"Geodesic causality in Kerr spacetimes with |a| ≥ M","authors":"Giulio Sanzeni ,&nbsp;Karim Mosani","doi":"10.1016/j.geomphys.2025.105589","DOIUrl":"10.1016/j.geomphys.2025.105589","url":null,"abstract":"<div><div>The analytic extension of the Kerr spacetimes into the negative radial region contains closed causal curves for any non-zero rotation parameter <em>a</em> and mass parameter <em>M</em>. Furthermore, the spacetimes become totally vicious when <span><math><mo>|</mo><mi>a</mi><mo>|</mo><mo>&gt;</mo><mi>M</mi></math></span>, meaning that through every point there exists a closed timelike curve. Despite this, we prove that Kerr spacetimes do not admit any closed null geodesics when <span><math><mo>|</mo><mi>a</mi><mo>|</mo><mo>≥</mo><mi>M</mi></math></span>. This result generalises recent findings by one of the authors, which showed the nonexistence of closed causal geodesics in the case <span><math><mo>|</mo><mi>a</mi><mo>|</mo><mo>&lt;</mo><mi>M</mi></math></span>. Combining these results, we establish the absence of closed null geodesics in Kerr spacetimes for any non-zero <em>a</em>.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105589"},"PeriodicalIF":1.6,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144580269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gromov-Hausdorff convergence of metric spaces of UCP maps UCP映射度量空间的Gromov-Hausdorff收敛性
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-07-08 DOI: 10.1016/j.geomphys.2025.105588
Tirthankar Bhattacharyya, Ritul Duhan, Chandan Pradhan
{"title":"Gromov-Hausdorff convergence of metric spaces of UCP maps","authors":"Tirthankar Bhattacharyya,&nbsp;Ritul Duhan,&nbsp;Chandan Pradhan","doi":"10.1016/j.geomphys.2025.105588","DOIUrl":"10.1016/j.geomphys.2025.105588","url":null,"abstract":"<div><div>It is shown that van Suijlekom's technique of imposing a set of conditions on operator system spectral triples ensures Gromov-Hausdorff convergence of sequences of sets of unital completely positive maps (equipped with the BW-topology which is metrizable). This implies that even when only a part of the spectrum of the Dirac operator is available together with a certain truncation of the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra, information about the geometry can be extracted.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105588"},"PeriodicalIF":1.6,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144633114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curvature of an exotic 7-sphere 奇异七球的曲率
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-07-08 DOI: 10.1016/j.geomphys.2025.105590
David S. Berman , Martin Cederwall , Tancredi Schettini Gherardini
{"title":"Curvature of an exotic 7-sphere","authors":"David S. Berman ,&nbsp;Martin Cederwall ,&nbsp;Tancredi Schettini Gherardini","doi":"10.1016/j.geomphys.2025.105590","DOIUrl":"10.1016/j.geomphys.2025.105590","url":null,"abstract":"<div><div>We study the geometry of the Gromoll–Meyer sphere, one of Milnor's exotic 7-spheres. We focus on a Kaluza–Klein Ansatz, with a round <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> as base space, unit <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> as fibre, and <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span> instantons as gauge fields, where all quantities admit an elegant description in quaternionic language. The metric's moduli space coincides with the <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> instantons' moduli space quotiented by the isometry of the base, plus an additional <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> factor corresponding to the radius of the base, <em>r</em>. We identify a “center” of the <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> instanton moduli space with enhanced symmetry. This <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> solution is used together with the maximally symmetric <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> solution to obtain a metric of maximal isometry, <span><math><mi>S</mi><mi>O</mi><mo>(</mo><mn>3</mn><mo>)</mo><mo>×</mo><mi>O</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span>, and to explicitly compute its Ricci tensor. This allows us to put a bound on <em>r</em> to ensure positive Ricci curvature, which implies various energy conditions for an 8-dimensional static space-time. This construction then enables a concrete examination of the properties of the sectional curvature.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105590"},"PeriodicalIF":1.6,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kac-Moody algebras on soft group manifolds 软群流形上的Kac-Moody代数
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-07-08 DOI: 10.1016/j.geomphys.2025.105587
Rutwig Campoamor-Stursberg , Alessio Marrani , Michel Rausch de Traubenberg
{"title":"Kac-Moody algebras on soft group manifolds","authors":"Rutwig Campoamor-Stursberg ,&nbsp;Alessio Marrani ,&nbsp;Michel Rausch de Traubenberg","doi":"10.1016/j.geomphys.2025.105587","DOIUrl":"10.1016/j.geomphys.2025.105587","url":null,"abstract":"<div><div>Within the so-called group geometric approach to (super)gravity and (super)string theories, any compact Lie group manifold <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> can be smoothly deformed into a group manifold <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span> (locally diffeomorphic to <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> itself), which is ‘soft’, namely, based on a non-left-invariant, intrinsic one-form Vielbein <em>μ</em>, which violates the Maurer-Cartan equations and consequently has a non-vanishing associated curvature two-form. Within the framework based on the above deformation (‘softening’), we show how to construct an infinite-dimensional (infinite-rank), generalized Kac-Moody (KM) algebra associated to <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span>, starting from the generalized KM algebras associated to <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>. As an application, we consider KM algebras associated to deformed manifolds such as the ‘soft’ circle, the ‘soft’ two-sphere and the ‘soft’ three-sphere. While the generalized KM algebra associated to the deformed circle is trivially isomorphic to its undeformed analogue, and hence not new, the ‘softening’ of the two- and three-sphere includes squashed manifolds (and in particular, the so-called Berger three-sphere) and yields to non-trivial results.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105587"},"PeriodicalIF":1.6,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On invariants of families of lemniscate motions in the two-center problem 双中心问题中运动族的不变量
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-07-07 DOI: 10.1016/j.geomphys.2025.105583
Hanna Häußler , Seongchan Kim
{"title":"On invariants of families of lemniscate motions in the two-center problem","authors":"Hanna Häußler ,&nbsp;Seongchan Kim","doi":"10.1016/j.geomphys.2025.105583","DOIUrl":"10.1016/j.geomphys.2025.105583","url":null,"abstract":"<div><div>We determine four topological invariants introduced by Cieliebak-Frauenfelder-Zhao <span><span>[3]</span></span>, based on Arnold's <span><math><msup><mrow><mi>J</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-invariant, of periodic lemniscate motions in Euler's two-center problem.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105583"},"PeriodicalIF":1.6,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some computations on trivial canonical-bundle solvmanifolds 平凡正则束解流形的一些计算
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-07-07 DOI: 10.1016/j.geomphys.2025.105586
Lapo Rubini
{"title":"Some computations on trivial canonical-bundle solvmanifolds","authors":"Lapo Rubini","doi":"10.1016/j.geomphys.2025.105586","DOIUrl":"10.1016/j.geomphys.2025.105586","url":null,"abstract":"<div><div>We compute the Dolbeault and the Bott-Chern cohomology of six dimensional solvmanifolds endowed with a complex structure of splitting type, introduced by Kasuya, and with trivial canonical bundle. We build, following results by Angella and Kasuya, finite dimensional double subcomplexes <span><math><mo>(</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>Γ</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>,</mo><mo>∂</mo><mo>,</mo><mover><mrow><mo>∂</mo></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo><mo>⊆</mo><mo>(</mo><msup><mrow><mo>∧</mo></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msup><mi>G</mi><mo>/</mo><mi>Γ</mi><mo>,</mo><mo>∂</mo><mo>,</mo><mover><mrow><mo>∂</mo></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span> for which the inclusion is an isomorphism in cohomology. We decompose such double complexes into indecomposable ones. Lastly, we study some notions of formality for this class of manifolds, giving a characterization of the <span><math><mo>∂</mo><mover><mrow><mo>∂</mo></mrow><mrow><mo>¯</mo></mrow></mover></math></span>-Lemma property in general complex dimension, and we compute triple ABC-Massey products on them.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105586"},"PeriodicalIF":1.6,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrix Lax pairs under the gauge equivalence relation induced by the gauge group action and Miura-type transformations for lattice equations 由规范群作用诱导的规范等价关系下的矩阵Lax对和格方程的miura型变换
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-07-05 DOI: 10.1016/j.geomphys.2025.105585
Sergei Igonin
{"title":"Matrix Lax pairs under the gauge equivalence relation induced by the gauge group action and Miura-type transformations for lattice equations","authors":"Sergei Igonin","doi":"10.1016/j.geomphys.2025.105585","DOIUrl":"10.1016/j.geomphys.2025.105585","url":null,"abstract":"<div><div>In this paper we explore interconnections of differential-difference matrix Lax representations (Lax pairs), gauge transformations, and discrete Miura-type transformations (MTs), which belong to the main tools in the theory of integrable differential-difference (lattice) equations.</div><div>For a given equation, two matrix Lax representations (MLRs) are said to be gauge equivalent if one of them can be obtained from the other by means of a (local) matrix gauge transformation. Matrix gauge transformations constitute an infinite-dimensional group called the matrix gauge group, which acts naturally on the set of MLRs of a given equation. Two MLRs are gauge equivalent if and only if they belong to the same orbit of the matrix gauge group action.</div><div>For a wide class of MLRs of (vector) evolutionary differential-difference equations, we present results on the following questions:<ul><li><span>1.</span><span><div>When and how can one simplify a given MLR by matrix gauge transformations and bring the MLR to a form suitable for constructing MTs?</div></span></li><li><span>2.</span><span><div>A MLR is called fake if it is gauge equivalent to a trivial MLR. How to determine whether a given MLR is not fake?</div></span></li></ul></div><div>Here and in a different publication (with E. Chistov), we apply results of the present paper to the following integrable examples:<ul><li><span>•</span><span><div>a 3-component lattice introduced by D. Zhang and D. Chen in their work on Hamiltonian structures of evolutionary lattice equations <span><span>[28]</span></span>,</div></span></li><li><span>•</span><span><div>some rational 1-component equations of order <span><math><mo>(</mo><mo>−</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> related to the Narita–Itoh–Bogoyavlensky lattice,</div></span></li><li><span>•</span><span><div>the 2-component Boussinesq lattice related to the lattice <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-algebra,</div></span></li><li><span>•</span><span><div>a 2-component equation (introduced by G. Marí Beffa and Jing Ping Wang in their work on Hamiltonian evolutions of polygons <span><span>[2]</span></span>) which describes the evolution induced on invariants by an invariant evolution of planar polygons.</div></span></li></ul> This allows us to construct new integrable equations (with new MLRs) connected by new MTs to known equations.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105585"},"PeriodicalIF":1.6,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144569977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信