Curvature of an exotic 7-sphere

IF 1.2 3区 数学 Q1 MATHEMATICS
David S. Berman , Martin Cederwall , Tancredi Schettini Gherardini
{"title":"Curvature of an exotic 7-sphere","authors":"David S. Berman ,&nbsp;Martin Cederwall ,&nbsp;Tancredi Schettini Gherardini","doi":"10.1016/j.geomphys.2025.105590","DOIUrl":null,"url":null,"abstract":"<div><div>We study the geometry of the Gromoll–Meyer sphere, one of Milnor's exotic 7-spheres. We focus on a Kaluza–Klein Ansatz, with a round <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> as base space, unit <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> as fibre, and <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span> instantons as gauge fields, where all quantities admit an elegant description in quaternionic language. The metric's moduli space coincides with the <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> instantons' moduli space quotiented by the isometry of the base, plus an additional <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> factor corresponding to the radius of the base, <em>r</em>. We identify a “center” of the <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> instanton moduli space with enhanced symmetry. This <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> solution is used together with the maximally symmetric <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> solution to obtain a metric of maximal isometry, <span><math><mi>S</mi><mi>O</mi><mo>(</mo><mn>3</mn><mo>)</mo><mo>×</mo><mi>O</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span>, and to explicitly compute its Ricci tensor. This allows us to put a bound on <em>r</em> to ensure positive Ricci curvature, which implies various energy conditions for an 8-dimensional static space-time. This construction then enables a concrete examination of the properties of the sectional curvature.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105590"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001743","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the geometry of the Gromoll–Meyer sphere, one of Milnor's exotic 7-spheres. We focus on a Kaluza–Klein Ansatz, with a round S4 as base space, unit S3 as fibre, and k=1,2 SU(2) instantons as gauge fields, where all quantities admit an elegant description in quaternionic language. The metric's moduli space coincides with the k=1,2 instantons' moduli space quotiented by the isometry of the base, plus an additional R+ factor corresponding to the radius of the base, r. We identify a “center” of the k=2 instanton moduli space with enhanced symmetry. This k=2 solution is used together with the maximally symmetric k=1 solution to obtain a metric of maximal isometry, SO(3)×O(2), and to explicitly compute its Ricci tensor. This allows us to put a bound on r to ensure positive Ricci curvature, which implies various energy conditions for an 8-dimensional static space-time. This construction then enables a concrete examination of the properties of the sectional curvature.
奇异七球的曲率
我们研究了Gromoll-Meyer球的几何,它是Milnor的奇异7球之一。我们关注Kaluza-Klein Ansatz,以圆形S4作为基空间,单位S3作为纤维,k=1,2 SU(2)实例作为规范场,其中所有的量都可以用四元数语言进行优雅的描述。度规的模空间与k=1,2瞬时模空间相吻合,该瞬时模空间由基的等距所商,加上一个额外的R+因子,对应于基的半径R。我们确定了k=2瞬时模空间的一个“中心”,具有增强的对称性。此k=2解与最大对称k=1解一起使用,以获得最大等距度量SO(3)×O(2),并显式计算其里奇张量。这允许我们给r设定一个界限以确保里奇曲率为正,这意味着8维静态时空的各种能量条件。这样的构造就可以对截面曲率的特性进行具体的检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信