Journal of Geometry and Physics最新文献

筛选
英文 中文
Outer billiards in the complex hyperbolic plane 复双曲平面上的外台球
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-05-29 DOI: 10.1016/j.geomphys.2025.105544
Yamile Godoy, Marcos Salvai
{"title":"Outer billiards in the complex hyperbolic plane","authors":"Yamile Godoy,&nbsp;Marcos Salvai","doi":"10.1016/j.geomphys.2025.105544","DOIUrl":"10.1016/j.geomphys.2025.105544","url":null,"abstract":"<div><div>Given a quadratically convex compact connected oriented hypersurface <em>N</em> of the complex hyperbolic plane, we prove that the characteristic rays of the symplectic form restricted to <em>N</em> determine a double geodesic foliation of the exterior <em>U</em> of <em>N</em>. This induces an outer billiard map <em>B</em> on <em>U</em>. We prove that <em>B</em> is a diffeomorphism (notice that weaker notions of strict convexity may allow the billiard map to be well-defined and invertible, but not smooth) and moreover, a symplectomorphism. These results generalize known geometric properties of the outer billiard maps in the hyperbolic plane and complex Euclidean space.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"215 ","pages":"Article 105544"},"PeriodicalIF":1.6,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144194788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prequantization of differential characters of Lie groupoids 李群拟微分特征的预量化
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-05-29 DOI: 10.1016/j.geomphys.2025.105547
Cheng-Yong Du
{"title":"Prequantization of differential characters of Lie groupoids","authors":"Cheng-Yong Du","doi":"10.1016/j.geomphys.2025.105547","DOIUrl":"10.1016/j.geomphys.2025.105547","url":null,"abstract":"<div><div>In this paper, we describe a category <span><math><msubsup><mrow><mi>DC</mi></mrow><mrow><mrow><mi>ex</mi></mrow><mo>,</mo><mn>3</mn><mo>−</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of degree-3 differential characters of a Lie groupoid <span><math><mi>G</mi></math></span> together with a prequantization functor Preq from it to the category <span><math><mi>G</mi><mi>e</mi><mi>r</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>∇</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-central extensions with pseudo-connections over <span><math><mi>G</mi></math></span>, and show that Preq is an equivalence of categories and the isomorphism classes of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-central extensions with pseudo-connections over <span><math><mi>G</mi></math></span> are classified by the cohomology group <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>D</mi><msubsup><mrow><mi>C</mi></mrow><mrow><mrow><mi>ex</mi></mrow><mo>,</mo><mn>3</mn><mo>−</mo><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> of degree-3 differential characters. As an application, we characterize closed integral 3-forms with prequantization <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-central extensions and pseudo-connections for all Lie groupoids. This generalizes Behrend–Xu's prequantization result of degree 3-context for Lie groupoids satisfying <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mo>•</mo></mrow></msub><mo>)</mo><mo>,</mo><mo>∂</mo><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. Moreover we identify the group of flat <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-central extensions over a Lie groupoid <span><math><mi>G</mi></math></span> with the cohomology group <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ex</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>,</mo><mi>R</mi><mo>/</mo><mi>Z</mi><mo>)</mo><mo>)</mo></math></span> of a modification of the complex of singular cochains with coefficient in <span><math><mi>R</mi><mo>/</mo><mi>Z</mi></math></span>. We also extend these results to differentiable stacks.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105547"},"PeriodicalIF":1.6,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144203640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representations and cohomology of Rota-Baxter Lie conformal algebras Rota-Baxter Lie共形代数的表示与上同调
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-05-28 DOI: 10.1016/j.geomphys.2025.105542
Jun Zhao , Bing Sun , Liangyun Chen
{"title":"Representations and cohomology of Rota-Baxter Lie conformal algebras","authors":"Jun Zhao ,&nbsp;Bing Sun ,&nbsp;Liangyun Chen","doi":"10.1016/j.geomphys.2025.105542","DOIUrl":"10.1016/j.geomphys.2025.105542","url":null,"abstract":"<div><div>In this paper, we study representations and cohomology of a weighted Rota-Baxter Lie conformal algebra. Given a weighted Rota-Baxter Lie conformal algebra <span><math><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> and its representation <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, we define its cohomology and discuss the relation with the cohomology of weighted Rota-Baxter associative conformal algebra. As applications of the cohomology theory, we study abelian extensions, formal deformations of a weighted Rota-Baxter Lie conformal algebra.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105542"},"PeriodicalIF":1.6,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144203639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrability structures of the (2 + 1)-dimensional Euler equation (2 + 1)维欧拉方程的可积性结构
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-05-28 DOI: 10.1016/j.geomphys.2025.105543
I.S. Krasil′shchik, O.I. Morozov
{"title":"Integrability structures of the (2 + 1)-dimensional Euler equation","authors":"I.S. Krasil′shchik,&nbsp;O.I. Morozov","doi":"10.1016/j.geomphys.2025.105543","DOIUrl":"10.1016/j.geomphys.2025.105543","url":null,"abstract":"<div><div>We construct a local variational Poisson structure (a Hamiltonian operator) for the <span><math><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional Euler equation in vorticity form. The inverse defines a nonlocal symplectic structure for the equation. We describe the action of this operator on the infinitesimal contact symmetries in terms of differential coverings over the Euler equation. Furthermore, we construct a nonlocal recursion operator for cosymmetries. Finally, we generalize the local variational Poisson structure for the Euler equation in vorticity form on a two-dimensional Riemannian manifold.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"215 ","pages":"Article 105543"},"PeriodicalIF":1.6,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144194728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algebro-geometric initial value problems for integrable nonlinear lattices: Tetragonal curves and Riemann theta function solutions 可积非线性格的代数几何初值问题:四方曲线和黎曼函数解
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-05-27 DOI: 10.1016/j.geomphys.2025.105541
Xianguo Geng, Minxin Jia, Ruomeng Li
{"title":"Algebro-geometric initial value problems for integrable nonlinear lattices: Tetragonal curves and Riemann theta function solutions","authors":"Xianguo Geng,&nbsp;Minxin Jia,&nbsp;Ruomeng Li","doi":"10.1016/j.geomphys.2025.105541","DOIUrl":"10.1016/j.geomphys.2025.105541","url":null,"abstract":"<div><div>In this paper, we establish the theory of tetragonal curves and address a series of fundamental problems within this framework, including the construction of a basis for holomorphic Abelian differentials, Abelian differentials of the second and third kinds, Baker-Akhiezer functions, and meromorphic functions. Building on these results, we apply the theory of tetragonal curves to investigate algebro-geometric initial value problems for integrable nonlinear lattice systems. As an illustrative example, we employ the discrete zero-curvature equation and the discrete Lenard equation to derive a hierarchy of coupled Bogoyavlensky lattice equations associated with a discrete <span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> matrix spectral problem. By analyzing the characteristic polynomial of the Lax matrix for this hierarchy, we introduce a tetragonal curve and its associated Riemann theta function, exploring the algebro-geometric properties of Baker-Akhiezer functions and a class of meromorphic functions. Using the Abel map and Abelian differentials, we precisely straighten out various flows. Finally, we obtain Riemann theta function solutions for the algebro-geometric initial value problems of the entire coupled Bogoyavlensky lattice hierarchy.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"215 ","pages":"Article 105541"},"PeriodicalIF":1.6,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144169540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closed real plane curves of hyperelliptic solutions of focusing gauged modified KdV equation of genus three 聚焦测量修正三格KdV方程超椭圆解的闭实平面曲线
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-05-21 DOI: 10.1016/j.geomphys.2025.105540
Shigeki Matsutani
{"title":"Closed real plane curves of hyperelliptic solutions of focusing gauged modified KdV equation of genus three","authors":"Shigeki Matsutani","doi":"10.1016/j.geomphys.2025.105540","DOIUrl":"10.1016/j.geomphys.2025.105540","url":null,"abstract":"<div><div>The real and imaginary parts of the focusing modified Korteweg-de Vries (MKdV) equation defined over the complex field <span><math><mi>C</mi></math></span> give rise to the focusing gauged MKdV (FGMKdV) equations. As a generalization of Euler's elastica whose curvature obeys the focusing static MKdV (FSMKdV) equation, we study real plane curves whose curvature obeys the FGMKdV equation since the FSMKdV equation is a special case of the FGMKdV equation. In this paper, we focus on the hyperelliptic curves of genus three. By tuning some moduli parameters and initial conditions, we show closed real plane curves associated with the FGMKdV equation beyond Euler's figure-eight of elastica.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"215 ","pages":"Article 105540"},"PeriodicalIF":1.6,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144134550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mirror partner for a Klein quartic polynomial Klein四次多项式的镜像伙伴
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-05-20 DOI: 10.1016/j.geomphys.2025.105538
Alexey Basalaev
{"title":"Mirror partner for a Klein quartic polynomial","authors":"Alexey Basalaev","doi":"10.1016/j.geomphys.2025.105538","DOIUrl":"10.1016/j.geomphys.2025.105538","url":null,"abstract":"<div><div>The results of A. Chiodo, Y. Ruan and M. Krawitz associate the mirror partner Calabi–Yau variety <em>X</em> to a Landau–Ginzburg orbifold <span><math><mo>(</mo><mi>f</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> if <em>f</em> is an invertible polynomial satisfying Calabi–Yau condition and the group <em>G</em> is a diagonal symmetry group of <em>f</em>. In this paper we investigate the Landau–Ginzburg orbifolds with a Klein quartic polynomial <span><math><mi>f</mi><mo>=</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></msubsup><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></msubsup><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <em>G</em> being all possible subgroups of <span><math><mrow><mi>GL</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>C</mi><mo>)</mo></math></span>, preserving the polynomial <em>f</em> and also the pairing in its Jacobian algebra. In particular, <em>G</em> is not necessarily abelian or diagonal. The zero–set of polynomial <em>f</em>, called Klein quartic, is a genus 3 smooth compact Riemann surface. We show that its mirror Landau–Ginzburg orbifold is <span><math><mo>(</mo><mi>f</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> with <em>G</em> being a <span><math><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi></math></span>–extension of a Klein four–group.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"215 ","pages":"Article 105538"},"PeriodicalIF":1.6,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144139205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrable geometric evolution equations through a deformed Heisenberg spin equation 通过变形海森堡自旋方程可积几何演化方程
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-05-19 DOI: 10.1016/j.geomphys.2025.105534
Dae Won Yoon , Zühal Küçükarslan Yüzbaşı
{"title":"Integrable geometric evolution equations through a deformed Heisenberg spin equation","authors":"Dae Won Yoon ,&nbsp;Zühal Küçükarslan Yüzbaşı","doi":"10.1016/j.geomphys.2025.105534","DOIUrl":"10.1016/j.geomphys.2025.105534","url":null,"abstract":"<div><div>Using the geometrical equivalence methods, we showed a deformed Heisenberg spin chain equation is geometrically equivalent to a generalized nonlinear Schrödinger equation. After that, we demonstrate in Euclidean 3-space that assigning spin vectors to the tangent, normal, and binormal vectors of the three distinct moving space curves, respectively, results in the creation of three distinct surfaces. Then we find the Gauss and the mean curvatures of these surfaces, respectively.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"214 ","pages":"Article 105534"},"PeriodicalIF":1.6,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144115946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moduli spaces of weighted pointed stable curves and toric topology of Grassmann manifolds 加权点稳定曲线的模空间与Grassmann流形的环拓扑
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-05-16 DOI: 10.1016/j.geomphys.2025.105533
Victor M. Buchstaber , Svjetlana Terzić
{"title":"Moduli spaces of weighted pointed stable curves and toric topology of Grassmann manifolds","authors":"Victor M. Buchstaber ,&nbsp;Svjetlana Terzić","doi":"10.1016/j.geomphys.2025.105533","DOIUrl":"10.1016/j.geomphys.2025.105533","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper we establish fundamental relations between the famous problem of compactifications of the moduli space &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of ordered &lt;em&gt;n&lt;/em&gt; distinct points on &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and toric topology of the complex Grassmann manifolds &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. The best known is the Deligne-Mumford compactification &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. The Losev-Manin compactification &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is also closely related to important questions in mathematical physics and toric geometry. These compactifications belong to the family of Hassett compactifications &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of moduli spaces of weighted pointed stable curves. In this paper we show that the orbit space &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; of complex Grassmann manifolds &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; by the canonical action of the compact torus &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; of the complexity &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; serves as a universal space in a sense that for any Hassett compactification &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; there exists a subspace &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and birational morphism &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. We describe large class of the set of weights &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; for which this birational morphism gives rise to an isomorphism. This provides topological model for the Hassett category in which Deligne-Mumford compactification &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"215 ","pages":"Article 105533"},"PeriodicalIF":1.6,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144139204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral forms and de-Rham Hodge operator 频谱形式和de-Rham Hodge算子
IF 1.6 3区 数学
Journal of Geometry and Physics Pub Date : 2025-05-16 DOI: 10.1016/j.geomphys.2025.105535
Jian Wang , Yong Wang , Mingyu Liu
{"title":"Spectral forms and de-Rham Hodge operator","authors":"Jian Wang ,&nbsp;Yong Wang ,&nbsp;Mingyu Liu","doi":"10.1016/j.geomphys.2025.105535","DOIUrl":"10.1016/j.geomphys.2025.105535","url":null,"abstract":"<div><div>Motivated by the trilinear functional of differential one-forms, spectral triple and spectral torsion for the Hodge-Dirac operator, we introduce a multilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue, which generalize the spectral torsion defined by Dabrowski-Sitarz-Zalecki. The main results of this paper recover two forms, torsion of the linear connection and four forms by the noncommutative residue and perturbed de-Rham Hodge operators, and provide an explicit computation of generalized spectral forms associated with the perturbed de-Rham Hodge Dirac triple.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"214 ","pages":"Article 105535"},"PeriodicalIF":1.6,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144115945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信