On entropy and complexity of coherent states and Kähler geometry

IF 1.2 3区 数学 Q1 MATHEMATICS
Koushik Ray
{"title":"On entropy and complexity of coherent states and Kähler geometry","authors":"Koushik Ray","doi":"10.1016/j.geomphys.2025.105598","DOIUrl":null,"url":null,"abstract":"<div><div>Consanguinity of entropy and complexity is pointed out through the example of coherent states of the group <span><math><mi>S</mi><mi>L</mi><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>C</mi><mo>)</mo></math></span>. Both are obtained from the Kähler potential of the underlying geometry of the sphere corresponding to the Fubini-Study metric. Entropy is shown to be equal to the Kähler potential written in terms of dual symplectic variables as the Guillemin potential for toric manifolds. The logarithm of complexity relating two states is shown to be equal to Calabi's diastasis function. Optimality of the Fubini-Study metric is indicated by considering its deformation.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"217 ","pages":"Article 105598"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001822","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consanguinity of entropy and complexity is pointed out through the example of coherent states of the group SL(d+1,C). Both are obtained from the Kähler potential of the underlying geometry of the sphere corresponding to the Fubini-Study metric. Entropy is shown to be equal to the Kähler potential written in terms of dual symplectic variables as the Guillemin potential for toric manifolds. The logarithm of complexity relating two states is shown to be equal to Calabi's diastasis function. Optimality of the Fubini-Study metric is indicated by considering its deformation.
论相干态的熵和复杂性与Kähler几何
通过群SL(d+1,C)相干态的例子指出了熵与复杂度的亲缘关系。两者都是从对应于Fubini-Study度量的球体基础几何的Kähler势中获得的。熵被证明等于Kähler势,用对偶辛变量的形式写成,作为环流形的吉列明势。有关两种状态的复杂性的对数被证明等于卡拉比的耗散函数。考虑了Fubini-Study度量的变形,说明了其最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信