{"title":"On the geometry of compatible Poisson and Riemannian structures","authors":"Nicolás Martínez Alba , Andrés Vargas","doi":"10.1016/j.geomphys.2025.105593","DOIUrl":null,"url":null,"abstract":"<div><div>We consider compatibility conditions between Poisson and Riemannian structures on smooth manifolds by means of a contravariant Levi-Civita connection. These include Riemann–Poisson structures (as defined by M. Boucetta), and the class of almost Kähler–Poisson manifolds, introduced with the aid of a contravariant <em>f</em>-structure, that will be called <em>partially co-complex structure</em>, in analogy with complex ones on Kähler manifolds. Additionally, we study the geometry of the symplectic foliation, and the behavior of these compatibilities under structure preserving maps and symmetries.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105593"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001779","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider compatibility conditions between Poisson and Riemannian structures on smooth manifolds by means of a contravariant Levi-Civita connection. These include Riemann–Poisson structures (as defined by M. Boucetta), and the class of almost Kähler–Poisson manifolds, introduced with the aid of a contravariant f-structure, that will be called partially co-complex structure, in analogy with complex ones on Kähler manifolds. Additionally, we study the geometry of the symplectic foliation, and the behavior of these compatibilities under structure preserving maps and symmetries.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity