Rota-Baxter operators on crossed modules of Lie groups and categorical solutions of the Yang-Baxter equation

IF 1.2 3区 数学 Q1 MATHEMATICS
Jun Jiang
{"title":"Rota-Baxter operators on crossed modules of Lie groups and categorical solutions of the Yang-Baxter equation","authors":"Jun Jiang","doi":"10.1016/j.geomphys.2025.105601","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we construct a categorical solution <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> of the Yang-Baxter equation, i.e. <span><math><mi>C</mi></math></span> is a small category and <span><math><mi>R</mi><mo>:</mo><mi>C</mi><mo>×</mo><mi>C</mi><mspace></mspace><mo>→</mo><mspace></mspace><mi>C</mi><mo>×</mo><mi>C</mi></math></span> is an invertible functor satisfying<span><span><span><math><mo>(</mo><mi>R</mi><mo>×</mo><msub><mrow><mi>Id</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>)</mo><mo>(</mo><msub><mrow><mi>Id</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>×</mo><mi>R</mi><mo>)</mo><mo>(</mo><mi>R</mi><mo>×</mo><msub><mrow><mi>Id</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msub><mrow><mi>Id</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>×</mo><mi>R</mi><mo>)</mo><mo>(</mo><mi>R</mi><mo>×</mo><msub><mrow><mi>Id</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>)</mo><mo>(</mo><msub><mrow><mi>Id</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>×</mo><mi>R</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>C</mi><mo>×</mo><mi>C</mi></math></span> is the product category. First, the notion of Rota-Baxter operators on crossed modules of Lie groups is defined and its various properties are established. Then, we use Rota-Baxter operators on crossed modules of Lie groups to construct categorical solutions of the Yang-Baxter equation. We also study the Rota-Baxter operators on crossed modules of Lie algebras which are infinitesimals of Rota-Baxter operators on crossed modules of Lie groups, they can give connections on manifolds. Finally, we study the integration of Rota-Baxter operators on crossed modules of Lie algebras and the differentials of Rota-Baxter operators on crossed modules of Lie groups.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"217 ","pages":"Article 105601"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001858","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we construct a categorical solution (C,R) of the Yang-Baxter equation, i.e. C is a small category and R:C×CC×C is an invertible functor satisfying(R×IdC)(IdC×R)(R×IdC)=(IdC×R)(R×IdC)(IdC×R), where C×C is the product category. First, the notion of Rota-Baxter operators on crossed modules of Lie groups is defined and its various properties are established. Then, we use Rota-Baxter operators on crossed modules of Lie groups to construct categorical solutions of the Yang-Baxter equation. We also study the Rota-Baxter operators on crossed modules of Lie algebras which are infinitesimals of Rota-Baxter operators on crossed modules of Lie groups, they can give connections on manifolds. Finally, we study the integration of Rota-Baxter operators on crossed modules of Lie algebras and the differentials of Rota-Baxter operators on crossed modules of Lie groups.
李群交叉模上的Rota-Baxter算子及Yang-Baxter方程的范畴解
在本文中,我们建立一个分类的解决方案(C, R) Yang-Baxter方程,即C是一个小类别和R: C×C→C×C是一个可逆的函子满足(R×IdC) (IdC×R) (R×IdC) = (IdC×R) (R×IdC) (IdC×R),其中C×C是产品类别。首先,定义了李群交叉模上Rota-Baxter算子的概念,并建立了它的各种性质。然后,利用李群交叉模上的Rota-Baxter算子构造Yang-Baxter方程的范畴解。我们还研究了李代数交叉模上的Rota-Baxter算子,它们是李群交叉模上的Rota-Baxter算子的无穷小量,它们可以给出流形上的连接。最后,研究了李代数交叉模上Rota-Baxter算子的积分和李群交叉模上Rota-Baxter算子的微分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信