David S. Berman , Martin Cederwall , Tancredi Schettini Gherardini
{"title":"奇异七球的曲率","authors":"David S. Berman , Martin Cederwall , Tancredi Schettini Gherardini","doi":"10.1016/j.geomphys.2025.105590","DOIUrl":null,"url":null,"abstract":"<div><div>We study the geometry of the Gromoll–Meyer sphere, one of Milnor's exotic 7-spheres. We focus on a Kaluza–Klein Ansatz, with a round <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> as base space, unit <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> as fibre, and <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span> instantons as gauge fields, where all quantities admit an elegant description in quaternionic language. The metric's moduli space coincides with the <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> instantons' moduli space quotiented by the isometry of the base, plus an additional <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> factor corresponding to the radius of the base, <em>r</em>. We identify a “center” of the <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> instanton moduli space with enhanced symmetry. This <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> solution is used together with the maximally symmetric <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> solution to obtain a metric of maximal isometry, <span><math><mi>S</mi><mi>O</mi><mo>(</mo><mn>3</mn><mo>)</mo><mo>×</mo><mi>O</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span>, and to explicitly compute its Ricci tensor. This allows us to put a bound on <em>r</em> to ensure positive Ricci curvature, which implies various energy conditions for an 8-dimensional static space-time. This construction then enables a concrete examination of the properties of the sectional curvature.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105590"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature of an exotic 7-sphere\",\"authors\":\"David S. Berman , Martin Cederwall , Tancredi Schettini Gherardini\",\"doi\":\"10.1016/j.geomphys.2025.105590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the geometry of the Gromoll–Meyer sphere, one of Milnor's exotic 7-spheres. We focus on a Kaluza–Klein Ansatz, with a round <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> as base space, unit <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> as fibre, and <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span> instantons as gauge fields, where all quantities admit an elegant description in quaternionic language. The metric's moduli space coincides with the <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> instantons' moduli space quotiented by the isometry of the base, plus an additional <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> factor corresponding to the radius of the base, <em>r</em>. We identify a “center” of the <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> instanton moduli space with enhanced symmetry. This <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> solution is used together with the maximally symmetric <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> solution to obtain a metric of maximal isometry, <span><math><mi>S</mi><mi>O</mi><mo>(</mo><mn>3</mn><mo>)</mo><mo>×</mo><mi>O</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span>, and to explicitly compute its Ricci tensor. This allows us to put a bound on <em>r</em> to ensure positive Ricci curvature, which implies various energy conditions for an 8-dimensional static space-time. This construction then enables a concrete examination of the properties of the sectional curvature.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"216 \",\"pages\":\"Article 105590\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025001743\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001743","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study the geometry of the Gromoll–Meyer sphere, one of Milnor's exotic 7-spheres. We focus on a Kaluza–Klein Ansatz, with a round as base space, unit as fibre, and instantons as gauge fields, where all quantities admit an elegant description in quaternionic language. The metric's moduli space coincides with the instantons' moduli space quotiented by the isometry of the base, plus an additional factor corresponding to the radius of the base, r. We identify a “center” of the instanton moduli space with enhanced symmetry. This solution is used together with the maximally symmetric solution to obtain a metric of maximal isometry, , and to explicitly compute its Ricci tensor. This allows us to put a bound on r to ensure positive Ricci curvature, which implies various energy conditions for an 8-dimensional static space-time. This construction then enables a concrete examination of the properties of the sectional curvature.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity