高纳什爆破局部代数下奇点的新不变量

IF 1.2 3区 数学 Q1 MATHEMATICS
Shuanghe Fan , Naveed Hussain , Stephen S.-T. Yau , Huaiqing Zuo
{"title":"高纳什爆破局部代数下奇点的新不变量","authors":"Shuanghe Fan ,&nbsp;Naveed Hussain ,&nbsp;Stephen S.-T. Yau ,&nbsp;Huaiqing Zuo","doi":"10.1016/j.geomphys.2025.105592","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> be an isolated hypersurface singularity. In our previous work, we introduced a series of new local algebras called higher Nash blow-up local algebras associated with <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. Thus many new invariants were introduced from these local algebras of <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. We conjectured that singularities can be distinguished by a finite subset of these invariants. Furthermore, we proposed a generalized Halperin Conjecture. In this paper, we determine these invariants for simple curve singularities. As a result, we verify our conjecture for simple curve singularities. In the proof, we concretely compute the new invariants of simple curve singularities. Moreover, we verify the generalized Halperin Conjecture in some new cases.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105592"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New invariants of singularities in terms of higher Nash blow-up local algebras\",\"authors\":\"Shuanghe Fan ,&nbsp;Naveed Hussain ,&nbsp;Stephen S.-T. Yau ,&nbsp;Huaiqing Zuo\",\"doi\":\"10.1016/j.geomphys.2025.105592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> be an isolated hypersurface singularity. In our previous work, we introduced a series of new local algebras called higher Nash blow-up local algebras associated with <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. Thus many new invariants were introduced from these local algebras of <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. We conjectured that singularities can be distinguished by a finite subset of these invariants. Furthermore, we proposed a generalized Halperin Conjecture. In this paper, we determine these invariants for simple curve singularities. As a result, we verify our conjecture for simple curve singularities. In the proof, we concretely compute the new invariants of simple curve singularities. Moreover, we verify the generalized Halperin Conjecture in some new cases.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"216 \",\"pages\":\"Article 105592\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025001767\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001767","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设(V,0)为孤立超曲面奇点。在我们之前的工作中,我们引入了一系列新的局部代数,称为与(V,0)相关的高纳什爆破局部代数。由此,从(V,0)的局部代数中引入了许多新的不变量。我们推测奇点可以由这些不变量的有限子集来区分。进一步,我们提出了一个广义的Halperin猜想。在本文中,我们确定了简单曲线奇异点的不变量。结果证明了我们对简单曲线奇异性的猜想。在证明中,我们具体计算了简单曲线奇异点的新不变量。此外,我们还在一些新的情况下验证了广义Halperin猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New invariants of singularities in terms of higher Nash blow-up local algebras
Let (V,0) be an isolated hypersurface singularity. In our previous work, we introduced a series of new local algebras called higher Nash blow-up local algebras associated with (V,0). Thus many new invariants were introduced from these local algebras of (V,0). We conjectured that singularities can be distinguished by a finite subset of these invariants. Furthermore, we proposed a generalized Halperin Conjecture. In this paper, we determine these invariants for simple curve singularities. As a result, we verify our conjecture for simple curve singularities. In the proof, we concretely compute the new invariants of simple curve singularities. Moreover, we verify the generalized Halperin Conjecture in some new cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信