{"title":"Modeling the Mutation and Competition of Certain Nutrient-Producing Protocells by Means of Specific Turing Machines","authors":"Richárd Kicsiny;Levente Hufnagel;Lajos Lóczi;László Székely;Zoltán Varga","doi":"10.1162/artl_a_00463","DOIUrl":"10.1162/artl_a_00463","url":null,"abstract":"It is very important to model the behavior of protocells as basic lifelike artificial organisms more and more accurately from the level of genomes to the level of populations. A better understanding of basic protocell communities may help us in describing more complex ecological systems accurately. In this article, we propose a new comprehensive, bilevel mathematical model of a community of three protocell species (one generalist and two specialists). The aim is to achieve a model that is as basic/fundamental as possible while already displaying mutation, selection, and complex population dynamics phenomena (like competitive exclusion and keystone species). At the microlevel of genetic codes, the protocells and their mutations are modeled with Turing machines (TMs). The specialists arise from the generalist by means of mutation. Then the species are put into a common habitat, where, at the macrolevel of populations, they have to compete for the available nutrients, a part of which they themselves can produce. Because of different kinds of mutations, the running times of the species as TMs (algorithms) are different. This feature is passed on to the macrolevel as different reproduction times. At the macrolevel, a discrete-time dynamic model describes the competition. The model displays complex lifelike behavior known from population ecology, including the so-called competitive exclusion principle and the effect of keystone species. In future works, the bilevel model will have a good chance of serving as a simple and useful tool for studying more lifelike phenomena (like evolution) in their pure/abstract form.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"31 1","pages":"2-30"},"PeriodicalIF":1.6,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-02-25DOI: 10.1162/artl_a_00457
Hanna Derets;Chrystopher L. Nehaniv
{"title":"Survival and Evolutionary Adaptation of Populations Under Disruptive Habitat Change: A Study With Darwinian Cellular Automata","authors":"Hanna Derets;Chrystopher L. Nehaniv","doi":"10.1162/artl_a_00457","DOIUrl":"10.1162/artl_a_00457","url":null,"abstract":"The evolution of living beings with continuous and consistent progress toward adaptation and ways to model evolution along principles as close as possible to Darwin’s are important areas of focus in Artificial Life. Though genetic algorithms and evolutionary strategies are good methods for modeling selection, crossover, and mutation, biological systems are undeniably spatially distributed processes in which living organisms interact with locally available individuals rather than with the entire population at once. This work presents a model for the survival of organisms during a change in the environment to a less favorable one, putting them at risk of extinction, such as many organisms experience today under climate change or local habitat loss or fragmentation. Local spatial structure of resources and environmental quality also impacts the capacity of an evolving population to adapt. The problem is considered on a probabilistic cellular automaton with update rules based on the principles of genetic algorithms. To carry out simulations according to the described model, the Darwinian cellular automata are introduced, and the software has been designed with the code available open source. An experimental evaluation of the behavioral characteristics of the model was carried out, completed by a critical evaluation of the results obtained, parametrically describing conditions and thresholds under which extinction or survival of the population may occur.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"31 1","pages":"106-123"},"PeriodicalIF":1.6,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-02-25DOI: 10.1162/artl_e_00469
Alan Dorin;Susan Stepney
{"title":"A Word from the Editors","authors":"Alan Dorin;Susan Stepney","doi":"10.1162/artl_e_00469","DOIUrl":"10.1162/artl_e_00469","url":null,"abstract":"","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"31 1","pages":"1-1"},"PeriodicalIF":1.6,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143506270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-02-25DOI: 10.1162/artl_a_00466
Keishu Utimula
{"title":"Guideless Artificial Life Model for Reproduction, Development, and Interactions","authors":"Keishu Utimula","doi":"10.1162/artl_a_00466","DOIUrl":"10.1162/artl_a_00466","url":null,"abstract":"Reproduction, development, and individual interactions are vital yet complex natural processes. Tierra (an ALife model proposed by Thomas Ray) and cellular automata, which can manage these aspects in a complex manner, are significantly limited in their ability to express morphology and behavior. In contrast, the virtual creatures proposed by Karl Sims have a considerably higher degree of freedom in terms of morphology and behavior. However, they also exhibit a limited capacity for processes like reproduction, development, and individual interactions. In addition, they employ genetic algorithms, which can result in a loss of biological diversity, as their implementation necessitates predefining a fitness function. Contrarily, the evolution of natural life is determined by mutation and natural selection, rather than by a human-defined fitness function. This study carefully extracts the characteristics of these models to propose a new Artificial Life model that can simulate reproduction, development, and individual interactions while exhibiting a high expressive power for morphology and behavior. The model is based on the concept of incorporating Tierra and cellular automata mechanisms into a cell that moves freely in 3-D space. In this model, no predefined fitness function or form that qualifies as a living creature exists. In other words, this approach can be rephrased as searching for persistent patterns, which is similar to the approach of Conway’s Game of Life. The primary objective of this study was to conduct a proof-of-concept demonstration to showcase the capabilities of this model. Guideless simulation by the proposed model using mutation and natural selection resulted in the formation of two types of creatures—dumbbell shaped and reticulated. These creatures exhibit intriguing features, exploiting the degrees of freedom inherent to the proposed model. Particularly noteworthy is their unique method of reproduction, which bears a striking resemblance to that of real organisms. These results reinforce the potential of this approach in modeling intricate processes observed in actual organisms and its ability to generate virtual creatures with intriguing ecologies.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"31 1","pages":"31-64"},"PeriodicalIF":1.6,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143082331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Special Issue “The Distributed Ghost”—Cellular Automata, Distributed Dynamical Systems, and Their Applications to Intelligence","authors":"Stefano Nichele;Hiroki Sayama;Eric Medvet;Chrystopher Nehaniv;Mario Pavone","doi":"10.1162/artl_e_00450","DOIUrl":"10.1162/artl_e_00450","url":null,"abstract":"","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"31 1","pages":"65-67"},"PeriodicalIF":1.6,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-02-01DOI: 10.1162/artl_e_00435
Alan Dorin;Susan Stepney
{"title":"What Is Artificial Life Today, and Where Should It Go?","authors":"Alan Dorin;Susan Stepney","doi":"10.1162/artl_e_00435","DOIUrl":"10.1162/artl_e_00435","url":null,"abstract":"","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 1","pages":"1-15"},"PeriodicalIF":2.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140308011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-02-01DOI: 10.1162/artl_r_00421
Leo S. D. Caves
{"title":"Review of Model Systems in Biology: History, Philosophy, and Practical Concerns by Georg Striedter","authors":"Leo S. D. Caves","doi":"10.1162/artl_r_00421","DOIUrl":"10.1162/artl_r_00421","url":null,"abstract":"","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 1","pages":"138-142"},"PeriodicalIF":2.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-02-01DOI: 10.1162/artl_a_00423
Jack Garbus;Jordan Pollack
{"title":"Emergent Resource Exchange and Tolerated Theft Behavior Using Multiagent Reinforcement Learning","authors":"Jack Garbus;Jordan Pollack","doi":"10.1162/artl_a_00423","DOIUrl":"10.1162/artl_a_00423","url":null,"abstract":"For decades, the evolution of cooperation has piqued interest in numerous academic disciplines, such as game theory, economics, biology, and computer science. In this work, we demonstrate the emergence of a novel and effective resource exchange protocol formed by dropping and picking up resources in a foraging environment. This form of cooperation is made possible by the introduction of a campfire, which adds an extended period of congregation and downtime for agents to explore otherwise unlikely interactions. We find that the agents learn to avoid getting cheated by their exchange partners, but not always from a third party. We also observe the emergence of behavior analogous to tolerated theft, despite the lack of any punishment, combat, or larceny mechanism in the environment.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 1","pages":"28-47"},"PeriodicalIF":2.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139522282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-02-01DOI: 10.1162/artl_a_00424
Tim Taylor
{"title":"An Afterword to Rise of the Self-Replicators: Placing John A. Etzler, Frigyes Karinthy, Fred Stahl, and Others in the Early History of Thought About Self-Reproducing Machines","authors":"Tim Taylor","doi":"10.1162/artl_a_00424","DOIUrl":"10.1162/artl_a_00424","url":null,"abstract":"This article is an afterword to the book Rise of the Self-Replicators: Early Visions of Machines, AI and Robots That Can Reproduce and Evolve, coauthored by Tim Taylor and Alan Dorin (2020). The book covered the early history of thought about self-reproducing and evolving machines, from initial speculations in the 17th century up to the early 1960s (from which point onward the more recent history is already well covered elsewhere). This article supplements the material discussed in the book by presenting several relevant sources that have come to the author’s attention since the book was published. The most significant additions to the history are from the German-born, 19th-century inventor and utopian John Adolphus Etzler in the 1830s–1840s, the Hungarian author and satirist Frigyes Karinthy in 1916, and the U.S. mathematician and computer scientist Fred Stahl in 1960.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 1","pages":"91-105"},"PeriodicalIF":2.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139565237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-02-01DOI: 10.1162/artl_a_00433
Zi-Wei Wu;Huamin Qu;Kang Zhang
{"title":"A Survey of Recent Practice of Artificial Life in Visual Art","authors":"Zi-Wei Wu;Huamin Qu;Kang Zhang","doi":"10.1162/artl_a_00433","DOIUrl":"10.1162/artl_a_00433","url":null,"abstract":"Nowadays, interdisciplinary fields between Artificial Life, artificial intelligence, computational biology, and synthetic biology are increasingly emerging into public view. It is necessary to reconsider the relations between the material body, identity, the natural world, and the concept of life. Art is known to pave the way to exploring and conveying new possibilities. This survey provides a literature review on recent works of Artificial Life in visual art during the past 40 years, specifically in the computational and software domain. Having proposed a set of criteria and a taxonomy, we briefly analyze representative artworks of different categories. We aim to provide a systematic overview of how artists are understanding nature and creating new life with modern technology.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 1","pages":"106-135"},"PeriodicalIF":2.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541961","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139941257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}