Artificial Life最新文献

筛选
英文 中文
On Recombination. 关于重组
IF 1.6 4区 计算机科学
Artificial Life Pub Date : 2024-10-11 DOI: 10.1162/artl_a_00453
Larry Bull
{"title":"On Recombination.","authors":"Larry Bull","doi":"10.1162/artl_a_00453","DOIUrl":"https://doi.org/10.1162/artl_a_00453","url":null,"abstract":"<p><p>The predominant explanations for including chromosomal recombination during meiosis are that it serves as a mechanism for repair or as a mechanism for increased adaptability. However, neither gives a clear immediate selective advantage to the reproducing organism itself. This letter revisits the idea that sex emerged and is maintained because it enables a simple form of fitness landscape smoothing to explain why recombination evolved. Although recombination was originally included in the idea, as with the other explanations, no immediate benefit was identified. That a benefit exists if the dividing cell(s) form a simple colony of the resulting haploids for some time after reproduction is explored here and shown to further increase the benefits of the landscape smoothing process.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(A)Life as It Could Be. (A)可能的生活。
IF 1.6 4区 计算机科学
Artificial Life Pub Date : 2024-10-11 DOI: 10.1162/artl_a_00455
Randall D Beer
{"title":"(A)Life as It Could Be.","authors":"Randall D Beer","doi":"10.1162/artl_a_00455","DOIUrl":"https://doi.org/10.1162/artl_a_00455","url":null,"abstract":"<p><p>On this 30th anniversary of the founding of the Artificial Life journal, I share some personal reflections on my own history of engagement with the field, my own particular assessment of its current status, and my vision for its future development. At the very least, I hope to stimulate some necessary critical conversations about the field of Artificial Life and where it is going.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comment on Randall D. Beer's "A(Life) as It Could Be". 评论 Randall D. Beer 的 "A(Life)as It Could Be"。
IF 1.6 4区 计算机科学
Artificial Life Pub Date : 2024-10-11 DOI: 10.1162/artl_a_00456
Inman Harvey
{"title":"Comment on Randall D. Beer's \"A(Life) as It Could Be\".","authors":"Inman Harvey","doi":"10.1162/artl_a_00456","DOIUrl":"https://doi.org/10.1162/artl_a_00456","url":null,"abstract":"","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Brains Perceive the World. 大脑如何感知世界
IF 1.6 4区 计算机科学
Artificial Life Pub Date : 2024-10-11 DOI: 10.1162/artl_a_00454
Christoph Adami
{"title":"How Brains Perceive the World.","authors":"Christoph Adami","doi":"10.1162/artl_a_00454","DOIUrl":"https://doi.org/10.1162/artl_a_00454","url":null,"abstract":"<p><p>Can machines ever be sentient? Could they perceive and feel things, be conscious of their surroundings? What are the prospects of achieving sentience in a machine? What are the dangers associated with such an endeavor, and is it even ethical to embark on such a path to begin with? In the series of articles of this column, I discuss one possible path toward \"general intelligence\" in machines: to use the process of Darwinian evolution to produce artificial brains that can be grafted onto mobile robotic platforms, with the goal of achieving fully embodied sentient machines.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Survival and Evolutionary Adaptation of Populations Under Disruptive Habitat Change: A Study With Darwinian Cellular Automata. 破坏性生境变化下种群的生存与进化适应:达尔文细胞自动机研究》。
IF 1.6 4区 计算机科学
Artificial Life Pub Date : 2024-10-11 DOI: 10.1162/artl_a_00457
Hanna Derets, Chrystopher L Nehaniv
{"title":"Survival and Evolutionary Adaptation of Populations Under Disruptive Habitat Change: A Study With Darwinian Cellular Automata.","authors":"Hanna Derets, Chrystopher L Nehaniv","doi":"10.1162/artl_a_00457","DOIUrl":"https://doi.org/10.1162/artl_a_00457","url":null,"abstract":"<p><p>The evolution of living beings with continuous and consistent progress toward adaptation and ways to model evolution along principles as close as possible to Darwin's are important areas of focus in Artificial Life. Though genetic algorithms and evolutionary strategies are good methods for modeling selection, crossover, and mutation, biological systems are undeniably spatially distributed processes in which living organisms interact with locally available individuals rather than with the entire population at once. This work presents a model for the survival of organisms during a change in the environment to a less favorable one, putting them at risk of extinction, such as many organisms experience today under climate change or local habitat loss or fragmentation. Local spatial structure of resources and environmental quality also impacts the capacity of an evolving population to adapt. The problem is considered on a probabilistic cellular automaton with update rules based on the principles of genetic algorithms. To carry out simulations according to the described model, the Darwinian cellular automata are introduced, and the software has been designed with the code available open source. An experimental evaluation of the behavioral characteristics of the model was carried out, completed by a critical evaluation of the results obtained, parametrically describing conditions and thresholds under which extinction or survival of the population may occur.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Reproduction and Evolution in Cellular Automata: 25 Years After Evoloops 细胞自动机的自我繁殖与进化:Evoloops 25 年之后
IF 2.6 4区 计算机科学
Artificial Life Pub Date : 2024-09-13 DOI: 10.1162/artl_a_00451
Hiroki Sayama, Chrystopher L. Nehaniv
{"title":"Self-Reproduction and Evolution in Cellular Automata: 25 Years After Evoloops","authors":"Hiroki Sayama, Chrystopher L. Nehaniv","doi":"10.1162/artl_a_00451","DOIUrl":"https://doi.org/10.1162/artl_a_00451","url":null,"abstract":"The year 2024 marks the 25th anniversary of the publication of evoloops, an evolutionary variant of Chris Langton’s self-reproducing loops, which proved constructively that Darwinian evolution of self-reproducing organisms by variation and natural selection is possible within deterministic cellular automata. Over the last few decades, this line of Artificial Life research has since undergone several important developments. Although it experienced a relative dormancy of activity for a while, the recent rise of interest in open-ended evolution and the success of continuous cellular automata models have brought researchers’ attention back to how to make spatiotemporal patterns self-reproduce and evolve within spatially distributed computational media. This article provides a review of the relevant literature on this topic over the past 25 years and highlights the major accomplishments made so far, the challenges being faced, and promising future research directions.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emergence of Self-Replicating Hierarchical Structures in a Binary Cellular Automaton. 二元细胞自动机中自复制分层结构的出现
IF 1.6 4区 计算机科学
Artificial Life Pub Date : 2024-08-16 DOI: 10.1162/artl_a_00449
Bo Yang
{"title":"Emergence of Self-Replicating Hierarchical Structures in a Binary Cellular Automaton.","authors":"Bo Yang","doi":"10.1162/artl_a_00449","DOIUrl":"https://doi.org/10.1162/artl_a_00449","url":null,"abstract":"<p><p>We have discovered a novel transition rule for binary cellular automata (CAs) that yields self-replicating structures across two spatial and temporal scales from sparse random initial conditions. Lower-level, shape-shifting clusters frequently follow a transient attractor trajectory, generating new clusters, some of which periodically self-duplicate. When the initial distribution of live cells is sufficiently sparse, these clusters coalesce into larger formations that also self-replicate. These formations may further form the boundaries of an expanding complex on an even larger scale. This rule, dubbed \"Outlier,\" is rotationally symmetric and applies to 2-D Moore neighborhoods. It was evolved through genetic programming during an extensive search for rules that foster open-ended evolution in CAs. While self-replicating structures, both crafted and emergent, have been created in CAs with state sets intentionally designed for this purpose, the Outlier may be the first known rule to facilitate nontrivial emergent self-replication across two spatial scales in binary CAs.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Special Issue "The Distributed Ghost"-Cellular Automata, Distributed Dynamical Systems, and Their Applications to Intelligence. 编辑:特刊 "分布式幽灵"--细胞自动机、分布式动力系统及其在智能领域的应用。
IF 1.6 4区 计算机科学
Artificial Life Pub Date : 2024-08-16 DOI: 10.1162/artl_e_00450
Stefano Nichele, Hiroki Sayama, Eric Medvet, Chrystopher Nehaniv, Mario Pavone
{"title":"Editorial: Special Issue \"The Distributed Ghost\"-Cellular Automata, Distributed Dynamical Systems, and Their Applications to Intelligence.","authors":"Stefano Nichele, Hiroki Sayama, Eric Medvet, Chrystopher Nehaniv, Mario Pavone","doi":"10.1162/artl_e_00450","DOIUrl":"https://doi.org/10.1162/artl_e_00450","url":null,"abstract":"","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Perception, Actuation, and Communication Impact the Emergence of Collective Intelligence in Simulated Modular Robots. 感知、执行和交流如何影响仿真模块化机器人集体智慧的形成。
IF 1.6 4区 计算机科学
Artificial Life Pub Date : 2024-08-15 DOI: 10.1162/artl_a_00447
Francesco Rusin, Eric Medvet
{"title":"How Perception, Actuation, and Communication Impact the Emergence of Collective Intelligence in Simulated Modular Robots.","authors":"Francesco Rusin, Eric Medvet","doi":"10.1162/artl_a_00447","DOIUrl":"https://doi.org/10.1162/artl_a_00447","url":null,"abstract":"<p><p>Modular robots are collections of simple embodied agents, the modules, that interact with each other to achieve complex behaviors. Each module may have a limited capability of perceiving the environment and performing actions; nevertheless, by behaving coordinately, and possibly by sharing information, modules can collectively perform complex actions. In principle, the greater the actuation, perception, and communication abilities of the single module are the more effective is the collection of modules. However, improved abilities also correspond to more complex controllers and, hence, larger search spaces when designing them by means of optimization. In this article, we analyze the impact of perception, actuation, and communication abilities on the possibility of obtaining good controllers for simulated modular robots, that is, controllers that allow the robots to exhibit collective intelligence. We consider the case of modular soft robots, where modules can contract, expand, attach, and detach from each other, and make them face two tasks (locomotion and piling), optimizing their controllers with evolutionary computation. We observe that limited abilities often do not prevent the robots from succeeding in the task, a finding that we explain with (a) the smaller search space corresponding to limited actuation, perception, and communication abilities, which makes the optimization easier, and (b) the fact that, for this kind of robot, morphological computation plays a significant role. Moreover, we discover that what matters more is the degree of collectivity the robots are required to exhibit when facing the task.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolving Novel Gene Regulatory Networks for Structural Engineering Designs. 为结构工程设计开发新的基因调控网络
IF 1.6 4区 计算机科学
Artificial Life Pub Date : 2024-08-15 DOI: 10.1162/artl_a_00448
Rahul Dubey, Simon Hickinbotham, Andrew Colligan, Imelda Friel, Edgar Buchanan, Mark Price, Andy M Tyrrell
{"title":"Evolving Novel Gene Regulatory Networks for Structural Engineering Designs.","authors":"Rahul Dubey, Simon Hickinbotham, Andrew Colligan, Imelda Friel, Edgar Buchanan, Mark Price, Andy M Tyrrell","doi":"10.1162/artl_a_00448","DOIUrl":"https://doi.org/10.1162/artl_a_00448","url":null,"abstract":"<p><p>Engineering design optimization poses a significant challenge, usually requiring human expertise to discover superior solutions. Although various search techniques have been employed to generate diverse designs, their effectiveness is often limited by problem-specific parameter tuning, making them less generalizable and scalable. This article introduces a framework inspired by evolutionary and developmental (evo-devo) concepts, aiming to automate the evolution of structural engineering designs. In biological systems, evo-devo governs the growth of single-cell organisms into multicellular organisms through the use of gene regulatory networks (GRNs). GRNs are inherently complex and highly nonlinear, and this article explores the use of neural networks and genetic programming as artificial representations of GRNs to emulate such behaviors. To evolve a wide range of Pareto fronts for artificial GRNs, this article introduces a new technique, a real value-encoded neuroevolutionary method termed real-encoded NEAT (RNEAT). The performance of RNEAT is compared with that of two well-known evolutionary search techniques across different 2-D and 3-D problems. The experimental results demonstrate two key findings. First, the proposed framework effectively generates a population of GRNs that can produce diverse structures for both 2-D and 3-D problems. Second, the proposed RNEAT algorithm outperforms its competitors on more than 50% of the problems examined. These results validate the proof of concept underlying the proposed evo-devo-based engineering design evolution.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信