Artificial LifePub Date : 2025-01-30DOI: 10.1162/artl_a_00466
Keishu Utimula
{"title":"Guideless Artificial Life Model for Reproduction, Development, and Interactions.","authors":"Keishu Utimula","doi":"10.1162/artl_a_00466","DOIUrl":"https://doi.org/10.1162/artl_a_00466","url":null,"abstract":"<p><p>Reproduction, development, and individual interactions are vital yet complex natural processes. Tierra (an ALife model proposed by Thomas Ray) and cellular automata, which can manage these aspects in a complex manner, are significantly limited in their ability to express morphology and behavior. In contrast, the virtual creatures proposed by Karl Sims have a considerably higher degree of freedom in terms of morphology and behavior. However, they also exhibit a limited capacity for processes like reproduction, development, and individual interactions. In addition, they employ genetic algorithms, which can result in a loss of biological diversity, as their implementation necessitates predefining a fitness function. Contrarily, the evolution of natural life is determined by mutation and natural selection, rather than by a human-defined fitness function. This study carefully extracts the characteristics of these models to propose a new Artificial Life model that can simulate reproduction, development, and individual interactions while exhibiting a high expressive power for morphology and behavior. The model is based on the concept of incorporating Tierra and cellular automata mechanisms into a cell that moves freely in 3-D space. In this model, no predefined fitness function or form that qualifies as a living creature exists. In other words, this approach can be rephrased as searching for persistent patterns, which is similar to the approach of Conway's Game of Life. The primary objective of this study was to conduct a proof-of-concept demonstration to showcase the capabilities of this model. Guideless simulation by the proposed model using mutation and natural selection resulted in the formation of two types of creatures-dumbbell shaped and reticulated. These creatures exhibit intriguing features, exploiting the degrees of freedom inherent to the proposed model. Particularly noteworthy is their unique method of reproduction, which bears a striking resemblance to that of real organisms. These results reinforce the potential of this approach in modeling intricate processes observed in actual organisms and its ability to generate virtual creatures with intriguing ecologies.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-34"},"PeriodicalIF":1.6,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143082331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-12-24DOI: 10.1162/artl_a_00463
Richárd Kicsiny, Levente Hufnagel, Lajos Lóczi, László Székely, Zoltán Varga
{"title":"Modeling the Mutation and Competition of Certain Nutrient-Producing Protocells by Means of Specific Turing Machines.","authors":"Richárd Kicsiny, Levente Hufnagel, Lajos Lóczi, László Székely, Zoltán Varga","doi":"10.1162/artl_a_00463","DOIUrl":"https://doi.org/10.1162/artl_a_00463","url":null,"abstract":"<p><p>It is very important to model the behavior of protocells as basic lifelike artificial organisms more and more accurately from the level of genomes to the level of populations. A better understanding of basic protocell communities may help us in describing more complex ecological systems accurately. In this article, we propose a new comprehensive, bilevel mathematical model of a community of three protocell species (one generalist and two specialists). The aim is to achieve a model that is as basic/fundamental as possible while already displaying mutation, selection, and complex population dynamics phenomena (like competitive exclusion and keystone species). At the microlevel of genetic codes, the protocells and their mutations are modeled with Turing machines (TMs). The specialists arise from the generalist by means of mutation. Then the species are put into a common habitat, where, at the macrolevel of populations, they have to compete for the available nutrients, a part of which they themselves can produce. Because of different kinds of mutations, the running times of the species as TMs (algorithms) are different. This feature is passed on to the macrolevel as different reproduction times. At the macrolevel, a discrete-time dynamic model describes the competition. The model displays complex lifelike behavior known from population ecology, including the so-called competitive exclusion principle and the effect of keystone species. In future works, the bilevel model will have a good chance of serving as a simple and useful tool for studying more lifelike phenomena (like evolution) in their pure/abstract form.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-29"},"PeriodicalIF":1.6,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-11-22DOI: 10.1162/artl_a_00462
Carlos Gershenson
{"title":"Complexity, Artificial Life, and Artificial Intelligence.","authors":"Carlos Gershenson","doi":"10.1162/artl_a_00462","DOIUrl":"https://doi.org/10.1162/artl_a_00462","url":null,"abstract":"<p><p>The scientific fields of complexity, Artificial Life (ALife), and artificial intelligence (AI) share commonalities: historic, conceptual, methodological, and philosophical. Although their origins trace back to the 1940s birth of cybernetics, they were able to develop properly only as modern information technology became available. In this perspective, I offer a personal (and thus biased) account of the expectations and limitations of these fields, some of which have their roots in the limits of formal systems. I use interactions, self-organization, emergence, and balance to compare different aspects of complexity, ALife, and AI. Even when the trajectory of the article is influenced by my personal experience, the general questions posed (which outweigh the answers) will, I hope, be useful in aligning efforts in these fields toward overcoming-or accepting-their limits.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-15"},"PeriodicalIF":1.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-11-13DOI: 10.1162/artl_c_00461
Larry Bull
{"title":"Neurons as Autoencoders.","authors":"Larry Bull","doi":"10.1162/artl_c_00461","DOIUrl":"https://doi.org/10.1162/artl_c_00461","url":null,"abstract":"<p><p>This letter presents the idea that neural backpropagation is exploiting dendritic processing to enable individual neurons to perform autoencoding. Using a very simple connection weight search heuristic and artificial neural network model, the effects of interleaving autoencoding for each neuron in a hidden layer of a feedforward network are explored. This is contrasted with the equivalent standard layered approach to autoencoding. It is shown that such individualized processing is not detrimental and can improve network learning.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-6"},"PeriodicalIF":1.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-11-05DOI: 10.1162/artl_a_00453
Larry Bull
{"title":"On Recombination","authors":"Larry Bull","doi":"10.1162/artl_a_00453","DOIUrl":"10.1162/artl_a_00453","url":null,"abstract":"The predominant explanations for including chromosomal recombination during meiosis are that it serves as a mechanism for repair or as a mechanism for increased adaptability. However, neither gives a clear immediate selective advantage to the reproducing organism itself. This letter revisits the idea that sex emerged and is maintained because it enables a simple form of fitness landscape smoothing to explain why recombination evolved. Although recombination was originally included in the idea, as with the other explanations, no immediate benefit was identified. That a benefit exists if the dividing cell(s) form a simple colony of the resulting haploids for some time after reproduction is explored here and shown to further increase the benefits of the landscape smoothing process.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 4","pages":"442-447"},"PeriodicalIF":1.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-11-05DOI: 10.1162/artl_a_00455
Randall D. Beer
{"title":"(A)Life as It Could Be","authors":"Randall D. Beer","doi":"10.1162/artl_a_00455","DOIUrl":"10.1162/artl_a_00455","url":null,"abstract":"On this 30th anniversary of the founding of the Artificial Life journal, I share some personal reflections on my own history of engagement with the field, my own particular assessment of its current status, and my vision for its future development. At the very least, I hope to stimulate some necessary critical conversations about the field of Artificial Life and where it is going.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 4","pages":"539-545"},"PeriodicalIF":1.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-11-05DOI: 10.1162/artl_a_00456
Inman Harvey
{"title":"Comment on Randall D. Beer’s “A(Life) as It Could Be”","authors":"Inman Harvey","doi":"10.1162/artl_a_00456","DOIUrl":"10.1162/artl_a_00456","url":null,"abstract":"","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 4","pages":"546-547"},"PeriodicalIF":1.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-11-05DOI: 10.1162/artl_a_00447
Francesco Rusin;Eric Medvet
{"title":"How Perception, Actuation, and Communication Impact the Emergence of Collective Intelligence in Simulated Modular Robots","authors":"Francesco Rusin;Eric Medvet","doi":"10.1162/artl_a_00447","DOIUrl":"10.1162/artl_a_00447","url":null,"abstract":"Modular robots are collections of simple embodied agents, the modules, that interact with each other to achieve complex behaviors. Each module may have a limited capability of perceiving the environment and performing actions; nevertheless, by behaving coordinately, and possibly by sharing information, modules can collectively perform complex actions. In principle, the greater the actuation, perception, and communication abilities of the single module are the more effective is the collection of modules. However, improved abilities also correspond to more complex controllers and, hence, larger search spaces when designing them by means of optimization. In this article, we analyze the impact of perception, actuation, and communication abilities on the possibility of obtaining good controllers for simulated modular robots, that is, controllers that allow the robots to exhibit collective intelligence. We consider the case of modular soft robots, where modules can contract, expand, attach, and detach from each other, and make them face two tasks (locomotion and piling), optimizing their controllers with evolutionary computation. We observe that limited abilities often do not prevent the robots from succeeding in the task, a finding that we explain with (a) the smaller search space corresponding to limited actuation, perception, and communication abilities, which makes the optimization easier, and (b) the fact that, for this kind of robot, morphological computation plays a significant role. Moreover, we discover that what matters more is the degree of collectivity the robots are required to exhibit when facing the task.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 4","pages":"448-465"},"PeriodicalIF":1.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial LifePub Date : 2024-11-05DOI: 10.1162/artl_a_00454
Christoph Adami
{"title":"How Brains Perceive the World","authors":"Christoph Adami","doi":"10.1162/artl_a_00454","DOIUrl":"10.1162/artl_a_00454","url":null,"abstract":"Then knowledge is to be found not in the experiences but in the process of reasoning about them; it is here, seemingly, not in the experiences, that it is possible to grasp being and truth.Plato, Theaetetus Can machines ever be sentient? Could they perceive and feel things, be conscious of their surroundings? What are the prospects of achieving sentience in a machine? What are the dangers associated with such an endeavor, and is it even ethical to embark on such a path to begin with? In the series of articles of this column, I discuss one possible path toward “general intelligence” in machines: to use the process of Darwinian evolution to produce artificial brains that can be grafted onto mobile robotic platforms, with the goal of achieving fully embodied sentient machines.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 4","pages":"551-563"},"PeriodicalIF":1.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}