使用基础模型自动搜索人工生命。

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Artificial Life Pub Date : 2025-09-04 DOI:10.1162/ARTL.a.8
Akarsh Kumar, Chris Lu, Louis Kirsch, Yujin Tang, Kenneth O Stanley, Phillip Isola, David Ha
{"title":"使用基础模型自动搜索人工生命。","authors":"Akarsh Kumar, Chris Lu, Louis Kirsch, Yujin Tang, Kenneth O Stanley, Phillip Isola, David Ha","doi":"10.1162/ARTL.a.8","DOIUrl":null,"url":null,"abstract":"<p><p>With the recent Nobel Prize awarded for radical advances in protein discovery, foundation models (FMs) for exploring large combinatorial spaces promise to revolutionize many scientific fields. Artificial Life (ALife) has not yet integrated FMs, thus presenting a major opportunity for the field to alleviate the historical burden of relying chiefly on manual design and trial and error to discover the configurations of lifelike simulations. This article presents, for the first time, a successful realization of this opportunity using vision-language FMs. The proposed approach, called automated search for Artificial Life (ASAL), (a) finds simulations that produce target phenomena, (b) discovers simulations that generate temporally open-ended novelty, and (c) illuminates an entire space of interestingly diverse simulations. Because of the generality of FMs, ASAL works effectively across a diverse range of ALife substrates, including Boids, Particle Life, the Game of Life, Lenia, and neural cellular automata. A major result highlighting the potential of this technique is the discovery of previously unseen Lenia and Boids life-forms, as well as cellular automata that are open-ended like Conway's Game of Life. Additionally, the use of FMs allows for the quantification of previously qualitative phenomena in a human-aligned way. This new paradigm promises to accelerate ALife research beyond what is possible through human ingenuity alone.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"31 3","pages":"368-396"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automating the Search for Artificial Life With Foundation Models.\",\"authors\":\"Akarsh Kumar, Chris Lu, Louis Kirsch, Yujin Tang, Kenneth O Stanley, Phillip Isola, David Ha\",\"doi\":\"10.1162/ARTL.a.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the recent Nobel Prize awarded for radical advances in protein discovery, foundation models (FMs) for exploring large combinatorial spaces promise to revolutionize many scientific fields. Artificial Life (ALife) has not yet integrated FMs, thus presenting a major opportunity for the field to alleviate the historical burden of relying chiefly on manual design and trial and error to discover the configurations of lifelike simulations. This article presents, for the first time, a successful realization of this opportunity using vision-language FMs. The proposed approach, called automated search for Artificial Life (ASAL), (a) finds simulations that produce target phenomena, (b) discovers simulations that generate temporally open-ended novelty, and (c) illuminates an entire space of interestingly diverse simulations. Because of the generality of FMs, ASAL works effectively across a diverse range of ALife substrates, including Boids, Particle Life, the Game of Life, Lenia, and neural cellular automata. A major result highlighting the potential of this technique is the discovery of previously unseen Lenia and Boids life-forms, as well as cellular automata that are open-ended like Conway's Game of Life. Additionally, the use of FMs allows for the quantification of previously qualitative phenomena in a human-aligned way. This new paradigm promises to accelerate ALife research beyond what is possible through human ingenuity alone.</p>\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\"31 3\",\"pages\":\"368-396\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/ARTL.a.8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/ARTL.a.8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着最近的诺贝尔奖授予在蛋白质发现方面的激进进展,用于探索大组合空间的基础模型(FMs)有望彻底改变许多科学领域。人工生命(ALife)尚未集成FMs,因此为该领域提供了一个重要的机会,以减轻主要依靠人工设计和试错来发现类生命模拟配置的历史负担。本文首次使用视觉语言fm成功地实现了这一机会。提出的方法被称为人工生命的自动搜索(ASAL), (a)发现产生目标现象的模拟,(b)发现产生暂时开放的新新性的模拟,(c)照亮了有趣的各种模拟的整个空间。由于FMs的通用性,ASAL在各种各样的ALife基质上有效地工作,包括Boids, Particle Life, Game of Life, Lenia和神经细胞自动机。突出这项技术潜力的一个主要结果是发现了以前看不见的Lenia和Boids生命形式,以及像Conway的生命游戏那样开放式的元胞自动机。此外,FMs的使用允许以与人类一致的方式对先前的定性现象进行量化。这种新模式有望加速生命研究,超越仅凭人类智慧所能达到的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automating the Search for Artificial Life With Foundation Models.

With the recent Nobel Prize awarded for radical advances in protein discovery, foundation models (FMs) for exploring large combinatorial spaces promise to revolutionize many scientific fields. Artificial Life (ALife) has not yet integrated FMs, thus presenting a major opportunity for the field to alleviate the historical burden of relying chiefly on manual design and trial and error to discover the configurations of lifelike simulations. This article presents, for the first time, a successful realization of this opportunity using vision-language FMs. The proposed approach, called automated search for Artificial Life (ASAL), (a) finds simulations that produce target phenomena, (b) discovers simulations that generate temporally open-ended novelty, and (c) illuminates an entire space of interestingly diverse simulations. Because of the generality of FMs, ASAL works effectively across a diverse range of ALife substrates, including Boids, Particle Life, the Game of Life, Lenia, and neural cellular automata. A major result highlighting the potential of this technique is the discovery of previously unseen Lenia and Boids life-forms, as well as cellular automata that are open-ended like Conway's Game of Life. Additionally, the use of FMs allows for the quantification of previously qualitative phenomena in a human-aligned way. This new paradigm promises to accelerate ALife research beyond what is possible through human ingenuity alone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信