Emma Stensby Norstein;Kotaro Yasui;Takeshi Kano;Akio Ishiguro;Kyrre Glette
{"title":"爬行蜈蚣类虚拟生物的行为多样性。","authors":"Emma Stensby Norstein;Kotaro Yasui;Takeshi Kano;Akio Ishiguro;Kyrre Glette","doi":"10.1162/artl_a_00476","DOIUrl":null,"url":null,"abstract":"Robot controllers are often optimized for a single robot in a single environment. This approach proves brittle, as such a controller will often fail to produce sensible behavior for a new morphology or environment. In comparison, animal gaits are robust and versatile. By observing animals, and attempting to extract general principles of locomotion from their movement, we aim to design a single, decentralized controller applicable to diverse morphologies and environments. The controller implements the three components of (a) undulation, (b) peristalsis, and (c) leg motion, which we believe are the essential elements in most animal gaits. This work is a first step toward a general controller. Accordingly, the controller has been evaluated on a limited range of simulated centipede-like robot morphologies. The centipede is chosen as inspiration because it moves using both body contractions and legged locomotion. For a controller to work in qualitatively different settings, it must also be able to exhibit qualitatively different behaviors. We find that six different modes of locomotion emerge from our controller in response to environmental and morphological changes. We also find that different parts of the centipede model can exhibit different modes of locomotion, simultaneously, based on local morphological features. This controller can potentially aid in the design or evolution of robots, by quickly testing the potential of a morphology, or be used to get insights about underlying locomotion principles in the centipede.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"31 3","pages":"321-344"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behaviour Diversity in a Walking and Climbing Centipede-Like Virtual Creature\",\"authors\":\"Emma Stensby Norstein;Kotaro Yasui;Takeshi Kano;Akio Ishiguro;Kyrre Glette\",\"doi\":\"10.1162/artl_a_00476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot controllers are often optimized for a single robot in a single environment. This approach proves brittle, as such a controller will often fail to produce sensible behavior for a new morphology or environment. In comparison, animal gaits are robust and versatile. By observing animals, and attempting to extract general principles of locomotion from their movement, we aim to design a single, decentralized controller applicable to diverse morphologies and environments. The controller implements the three components of (a) undulation, (b) peristalsis, and (c) leg motion, which we believe are the essential elements in most animal gaits. This work is a first step toward a general controller. Accordingly, the controller has been evaluated on a limited range of simulated centipede-like robot morphologies. The centipede is chosen as inspiration because it moves using both body contractions and legged locomotion. For a controller to work in qualitatively different settings, it must also be able to exhibit qualitatively different behaviors. We find that six different modes of locomotion emerge from our controller in response to environmental and morphological changes. We also find that different parts of the centipede model can exhibit different modes of locomotion, simultaneously, based on local morphological features. This controller can potentially aid in the design or evolution of robots, by quickly testing the potential of a morphology, or be used to get insights about underlying locomotion principles in the centipede.\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\"31 3\",\"pages\":\"321-344\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11154119/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11154119/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Behaviour Diversity in a Walking and Climbing Centipede-Like Virtual Creature
Robot controllers are often optimized for a single robot in a single environment. This approach proves brittle, as such a controller will often fail to produce sensible behavior for a new morphology or environment. In comparison, animal gaits are robust and versatile. By observing animals, and attempting to extract general principles of locomotion from their movement, we aim to design a single, decentralized controller applicable to diverse morphologies and environments. The controller implements the three components of (a) undulation, (b) peristalsis, and (c) leg motion, which we believe are the essential elements in most animal gaits. This work is a first step toward a general controller. Accordingly, the controller has been evaluated on a limited range of simulated centipede-like robot morphologies. The centipede is chosen as inspiration because it moves using both body contractions and legged locomotion. For a controller to work in qualitatively different settings, it must also be able to exhibit qualitatively different behaviors. We find that six different modes of locomotion emerge from our controller in response to environmental and morphological changes. We also find that different parts of the centipede model can exhibit different modes of locomotion, simultaneously, based on local morphological features. This controller can potentially aid in the design or evolution of robots, by quickly testing the potential of a morphology, or be used to get insights about underlying locomotion principles in the centipede.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.