{"title":"Benefit Game 2.0: Alien Seaweed Swarms-Exploring the Interplay of Human Activity and Environmental Sustainability.","authors":"Dan-Lu Fei, Zi-Wei Wu, Kang Zhang","doi":"10.1162/artl_a_00468","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents Benefit Game 2.0, a multiscreen Artificial Life gameplay installation. Saccharina latissima, a seaweed species economically beneficial to humans but threatened by overexploitation, motivates the creation of this artwork. Technically, the authors create an underwater virtual ecosystem consisting of a seaweed swarm and symbiotic fungi, created using procedural content generation via machine learning and rule-based methods. Moreover, the work features a unique cybernetic loop structure, incorporating audience observation and game token interactions. This virtual system is also symbolically influenced in real time by indoor carbon dioxide measurements, serving as an artistic metaphor for the broader impacts of climate change. This integration with the physical game machine underscores the fragile relationship between human activities and the environment under severe global climate change and immerses the audience in the challenging balance between sustainability and profit seeking in this context.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-17"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/artl_a_00468","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents Benefit Game 2.0, a multiscreen Artificial Life gameplay installation. Saccharina latissima, a seaweed species economically beneficial to humans but threatened by overexploitation, motivates the creation of this artwork. Technically, the authors create an underwater virtual ecosystem consisting of a seaweed swarm and symbiotic fungi, created using procedural content generation via machine learning and rule-based methods. Moreover, the work features a unique cybernetic loop structure, incorporating audience observation and game token interactions. This virtual system is also symbolically influenced in real time by indoor carbon dioxide measurements, serving as an artistic metaphor for the broader impacts of climate change. This integration with the physical game machine underscores the fragile relationship between human activities and the environment under severe global climate change and immerses the audience in the challenging balance between sustainability and profit seeking in this context.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.