{"title":"细胞与细胞之间的相互作用:耦合布尔网络如何趋向临界。","authors":"Michele Braccini;Paolo Baldini;Andrea Roli","doi":"10.1162/artl_a_00444","DOIUrl":null,"url":null,"abstract":"Biological cells are usually operating in conditions characterized by intercellular signaling and interaction, which are supposed to strongly influence individual cell dynamics. In this work, we study the dynamics of interacting random Boolean networks, focusing on attractor properties and response to perturbations. We observe that the properties of isolated critical Boolean networks are substantially maintained also in interaction settings, while interactions bias the dynamics of chaotic and ordered networks toward that of critical cells. The increase in attractors observed in multicellular scenarios, compared to single cells, allows us to hypothesize that biological processes, such as ontogeny and cell differentiation, leverage interactions to modulate individual and collective cell responses.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"31 1","pages":"68-80"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell–Cell Interactions: How Coupled Boolean Networks Tend to Criticality\",\"authors\":\"Michele Braccini;Paolo Baldini;Andrea Roli\",\"doi\":\"10.1162/artl_a_00444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological cells are usually operating in conditions characterized by intercellular signaling and interaction, which are supposed to strongly influence individual cell dynamics. In this work, we study the dynamics of interacting random Boolean networks, focusing on attractor properties and response to perturbations. We observe that the properties of isolated critical Boolean networks are substantially maintained also in interaction settings, while interactions bias the dynamics of chaotic and ordered networks toward that of critical cells. The increase in attractors observed in multicellular scenarios, compared to single cells, allows us to hypothesize that biological processes, such as ontogeny and cell differentiation, leverage interactions to modulate individual and collective cell responses.\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\"31 1\",\"pages\":\"68-80\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10907986/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10907986/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Cell–Cell Interactions: How Coupled Boolean Networks Tend to Criticality
Biological cells are usually operating in conditions characterized by intercellular signaling and interaction, which are supposed to strongly influence individual cell dynamics. In this work, we study the dynamics of interacting random Boolean networks, focusing on attractor properties and response to perturbations. We observe that the properties of isolated critical Boolean networks are substantially maintained also in interaction settings, while interactions bias the dynamics of chaotic and ordered networks toward that of critical cells. The increase in attractors observed in multicellular scenarios, compared to single cells, allows us to hypothesize that biological processes, such as ontogeny and cell differentiation, leverage interactions to modulate individual and collective cell responses.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.