Richárd Kicsiny, Levente Hufnagel, Lajos Lóczi, László Székely, Zoltán Varga
{"title":"Modeling the Mutation and Competition of Certain Nutrient-Producing Protocells by Means of Specific Turing Machines.","authors":"Richárd Kicsiny, Levente Hufnagel, Lajos Lóczi, László Székely, Zoltán Varga","doi":"10.1162/artl_a_00463","DOIUrl":null,"url":null,"abstract":"<p><p>It is very important to model the behavior of protocells as basic lifelike artificial organisms more and more accurately from the level of genomes to the level of populations. A better understanding of basic protocell communities may help us in describing more complex ecological systems accurately. In this article, we propose a new comprehensive, bilevel mathematical model of a community of three protocell species (one generalist and two specialists). The aim is to achieve a model that is as basic/fundamental as possible while already displaying mutation, selection, and complex population dynamics phenomena (like competitive exclusion and keystone species). At the microlevel of genetic codes, the protocells and their mutations are modeled with Turing machines (TMs). The specialists arise from the generalist by means of mutation. Then the species are put into a common habitat, where, at the macrolevel of populations, they have to compete for the available nutrients, a part of which they themselves can produce. Because of different kinds of mutations, the running times of the species as TMs (algorithms) are different. This feature is passed on to the macrolevel as different reproduction times. At the macrolevel, a discrete-time dynamic model describes the competition. The model displays complex lifelike behavior known from population ecology, including the so-called competitive exclusion principle and the effect of keystone species. In future works, the bilevel model will have a good chance of serving as a simple and useful tool for studying more lifelike phenomena (like evolution) in their pure/abstract form.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-29"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/artl_a_00463","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
It is very important to model the behavior of protocells as basic lifelike artificial organisms more and more accurately from the level of genomes to the level of populations. A better understanding of basic protocell communities may help us in describing more complex ecological systems accurately. In this article, we propose a new comprehensive, bilevel mathematical model of a community of three protocell species (one generalist and two specialists). The aim is to achieve a model that is as basic/fundamental as possible while already displaying mutation, selection, and complex population dynamics phenomena (like competitive exclusion and keystone species). At the microlevel of genetic codes, the protocells and their mutations are modeled with Turing machines (TMs). The specialists arise from the generalist by means of mutation. Then the species are put into a common habitat, where, at the macrolevel of populations, they have to compete for the available nutrients, a part of which they themselves can produce. Because of different kinds of mutations, the running times of the species as TMs (algorithms) are different. This feature is passed on to the macrolevel as different reproduction times. At the macrolevel, a discrete-time dynamic model describes the competition. The model displays complex lifelike behavior known from population ecology, including the so-called competitive exclusion principle and the effect of keystone species. In future works, the bilevel model will have a good chance of serving as a simple and useful tool for studying more lifelike phenomena (like evolution) in their pure/abstract form.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.