Farzin Kazemi, Torkan Shafighfard, Robert Jankowski, Doo-Yeol Yoo
{"title":"Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete","authors":"Farzin Kazemi, Torkan Shafighfard, Robert Jankowski, Doo-Yeol Yoo","doi":"10.1007/s43452-024-01067-5","DOIUrl":"10.1007/s43452-024-01067-5","url":null,"abstract":"<div><p>Conventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO<sub>2</sub> is produced throughout the cement-making process, which is in contrary to the current worldwide trend of lowering emissions and conserving energy, thus restricting the further advancement of UHPC. Considering climate change and sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC) materials have recently received considerable attention. Following the emergence of advanced prediction techniques aimed at reducing experimental tools and labor costs, this study provides a comparative study of different methods based on machine learning (ML) algorithms to propose an active learning-based ML model (AL-Stacked ML) for predicting the compressive strength of AA-UHPC. A data-rich framework containing 284 experimental datasets and 18 input parameters was collected. A comprehensive evaluation of the significance of input features that may affect compressive strength of AA-UHPC was performed. Results confirm that AL-Stacked ML-3 with accuracy of 98.9% can be used for different general experimental specimens, which have been tested in this research. Active learning can improve the accuracy up to 4.1% and further enhance the Stacked ML models. In addition, graphical user interface (GUI) was introduced and validated by experimental tests to facilitate comparable prospective studies and predictions.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43452-024-01067-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Radziejewska, M. Marczak, P. Maj, D. Głowacki, R. Diduszko
{"title":"Surface integrity and mechanical properties of small elements fabricated through LPBF and post-processed with heat treatment and abrasive machining","authors":"J. Radziejewska, M. Marczak, P. Maj, D. Głowacki, R. Diduszko","doi":"10.1007/s43452-024-01068-4","DOIUrl":"10.1007/s43452-024-01068-4","url":null,"abstract":"<div><p>The present research analyzes the impact of heat treatment atmosphere followed by finishing surface machining of small elements of Inconel 939 fabricated through laser powder bed fusion (LPBF). The analysis involved annealing in two gas mediums, solution treatment, and aging to achieve the desired microstructure and mechanical properties. The finishing surface was performed using various variants of abrasive machining. A more than fivefold reduction in the average roughness height Ra from 5.6 µm to 1.15 µm was achieved using metal balls as an abrasive, which was required for further processing. Residual stress tests have shown that due to heat and abrasive treatment, tensile stresses change into compressive ones. After printing, samples are characterized by tensile residual stresses on the surface (+ 428 MPa), while after heat treatment, compressive stresses occur (− 179 MPa). Abrasive machining with metal balls increases the value of compressive stresses to − 464 MPa. In addition, the impact of post-processing on the microstructure of Inconel 939 was discussed in terms of mechanical properties. The yield strength of 1184 MPa and elongation values of 19.3% were obtained for samples after HT in an argon atmosphere and abrasive machining with a ceramics roller. These studies provide valuable new information on the effective heat treatment and optimization of the finishing machining of Inconel 939, especially in achieving the desired surface roughness, microstructure, and mechanical properties for aerospace applications.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43452-024-01068-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmet Can Altunişik, Muhammed Mustafa Öztürk, Ali Fuat Genç, Ali Kaya, Yunus Emrahan Akbulut, Fezayil Sunca, Murat Günaydin
{"title":"Estimating fundamental frequency of masonry arches under elevated temperature: numerical analysis and validation using ambient vibration tests","authors":"Ahmet Can Altunişik, Muhammed Mustafa Öztürk, Ali Fuat Genç, Ali Kaya, Yunus Emrahan Akbulut, Fezayil Sunca, Murat Günaydin","doi":"10.1007/s43452-024-01085-3","DOIUrl":"10.1007/s43452-024-01085-3","url":null,"abstract":"<div><p>In this study, the changing of dynamic characteristics of masonry arches at varying geometric parameters and temperature histories was investigated through a combination of experimental and numerical methods. First, the dynamic characteristics of laboratory-built arch models were determined both pre- and post-high-temperature test using ambient vibration testing. Then, the finite element (FE) models of the arches were developed for both, allowing for dynamic characteristics to be assessed numerically. To refine the accuracy of numerical models, FE analyses were adjusted based on experimental data. These updated FE models were used to investigate the dynamic characteristics of arches with different spans, heights, widths, and thicknesses under different temperature history scenarios. Finally, utilizing the data repository obtained, formulation and graphs/charts, providing valuable insights into the dynamic response of masonry arches under fire conditions, were developed and presented for practical application. The experimental study revealed that the natural frequencies of arches decreased by 55% with increasing temperature exposure.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical assessment of dynamic stability in 2D unsaturated soil slopes reinforced with piles","authors":"Jiaping Sun, Chao Liang, Tiantang Yu","doi":"10.1007/s43452-024-01060-y","DOIUrl":"10.1007/s43452-024-01060-y","url":null,"abstract":"<div><p>The stabilizing pile represents a promising solution for enhancing the seismic resilience of unsaturated slopes. This study introduces a novel analytical framework for assessing the stability of unsaturated slopes reinforced with piles, amalgamating the minimum potential energy approach with the pseudo-dynamic method. The formulation of the external potential energy arising from the self-weight of the landslide mass and seismic forces is derived. Furthermore, traditional plasticity theory is extended to unsaturated soil slopes to account for the augmenting influence of matric suction on the lateral pressure exerted by stabilizing piles. The efficacy of reinforcing unsaturated soil slopes with piles is gauged through the definition of the safety factor (SF), delineated as the ratio of resistance moment to sliding moment. Additionally, a fresh interpretation of the critical slip surface (CSS) for unsaturated soil slopes is proposed, alongside an original criterion for identifying CSS, introduced herein for the first time. The validity of the proposed methodology is substantiated through examination of three case studies, yielding results indicative of its efficacy and rationality. The analysis underscores the substantial fortifying impact of matric suction on the stability of unsaturated slopes, as well as the reinforcing influence of piles. Moreover, an exploration into the ramifications of seismic and pile-related parameters on slope performance and CSS is conducted. In conclusion, this approach serves as a valuable reference for the design of unsaturated slopes fortified with stabilizing piles.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving formability of AZ31B magnesium alloy induced by twinning multiplication and annihilation during electromagnetic forming","authors":"Shu Wang, Sheng Liu, Xiaoming Sun, Xiaohui Cui","doi":"10.1007/s43452-024-01057-7","DOIUrl":"10.1007/s43452-024-01057-7","url":null,"abstract":"<div><p>The high-rate forming method, such as electromagnetic forming (EMF), can enhance the formability of materials. However, the deformation mechanism of EMF has received little attention for AZ31B magnesium alloy. To this end, the quasi-static stamping (QS) and EMF experiments of AZ31B Mg alloy under uniaxial tension, equiaxial tension and plane strain are carried out in this paper. The results show the maximum forming height and limit strain of EMF samples were 33% and 96.7% higher than QS sample, respectively. In the QS process, the twinning density of AZ31B alloy increases gradually, but the overall number is rare. In the EMF process, the twinning number shows a multiplication—annihilation—stabilization trend, but the overall number is more. This indicates that the deformation mechanism of AZ31B alloy during QS is dominated by dislocation slip, and the twinning–detwinning–dislocation slip occurs sequentially during EMF. That is, EMF induces a transformation in the deformation mechanism. The transformation early consumes severe plastic deformation energy and releases stress, so directly enhances the formability of AZ31B alloy. Meanwhile, the increase of the boundaries and the weakening of the basal texture caused by the transformation indirectly promotes formability of AZ31B alloy. In addition, activation of (11–20) slip system, more pyramidal <<i>c</i> + <i>a</i>> dislocations and wave-like slips induced by EMF is also beneficial to improve the formability of AZ31B alloy.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ya-Hui Li, Shan-Suo Zheng, Li-Guo Dong, De-Liang Wang, Zi-Wei Sang
{"title":"Seismic capacity evaluation of corroded reinforced concrete frame structures","authors":"Ya-Hui Li, Shan-Suo Zheng, Li-Guo Dong, De-Liang Wang, Zi-Wei Sang","doi":"10.1007/s43452-024-01059-5","DOIUrl":"10.1007/s43452-024-01059-5","url":null,"abstract":"<div><p>In-service reinforced concrete (RC) structures trigger complex deterioration mechanisms in seismic performance due to corrosion, leading to difficulties in evaluating the seismic capacity. To scientifically evaluate the seismic capacity of corroded RC frame structures, this paper proposes a quantifiable framework for absolute seismic capacity evaluation. The study establishes numerical models of typical RC frame structures considering the number of stories, service years, seismic fortification intensity, and different versions of design codes. Additionally, classification criteria for structural failure states based on the proportion of component damage are proposed. The seismic capacity of corroded RC frame structures under different failure states is determined using elastoplastic time-history analysis, and the influence of various parameters on the structural seismic capacity is investigated. Based on the results of the structural seismic capacity evaluation, a prediction model for the seismic capacity of corroded RC frame structures is developed using the BP neural network to establish the nonlinear mapping relationship between key parameters and structural seismic capacity. The results indicate that the seismic capacity of corroded RC frame structures continuously decreases with an increase in the service years and the number of stories. Earlier versions of design codes result in smaller residual seismic capacity of RC frame structures under different failure states, with a faster degradation rate. The sensitivity of the structural seismic capacity to various parameters is ranked as follows: structural failure states, the number of stories, seismic fortification intensity, service years, and versions of design codes.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis and prediction of compressive strength of calcium aluminate cement paste based on machine learning","authors":"Bin Yang, Yue Li, Jiale Shen, Hui Lin","doi":"10.1007/s43452-024-01083-5","DOIUrl":"10.1007/s43452-024-01083-5","url":null,"abstract":"<div><p>Calcium aluminate cement (CAC) is an important hydraulic cementitious material. It is widely used in construction, metallurgy, chemical industry and other fields due to its high early strength. The factors affecting its strength are also very complex. The research focus of this paper is to establish a prediction model for the compressive strength of CAC paste, so as to assist scientific research and practical engineering to quickly predict the strength of CAC paste at different ages under different mix ratios and curing conditions. In this paper, 273 sets of data are trained and tested based on support vector regression (SVR), random forest regression (RFR), gradient boosting (GB) and extreme gradient boosting (XGB) algorithms. It is found that the prediction accuracy of GB model can reach 89%. Meanwhile, based on the GB model, the feature importance analysis, global interpretation and dependence analysis are carried out. It is found that the main factors affecting the strength of CAC are relative humidity, silica fume content and curing temperature. To obtain high-strength CAC paste, the recommended mix ratio and curing conditions are as follows: Al<sub>2</sub>O<sub>3</sub> content is 67%, CaO content is 32%, silica fume replacement rate is 10%, water–cement ratio is 0.1, relative humidity is 90%, curing temperature is 5 °C and low-temperature treatment time is greater than 60 days. Finally, a graphical user interface is established to facilitate direct prediction of CAC paste under new mix ratio and curing conditions.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao-qiang Wang, Lin Yu, Hao-ran Wang, Sheng-hui Gao, Jian-Shan Huang, Xi Chen, Meng-sheng Shao
{"title":"LC50 fly ash microbead lightweight high-strength concrete: mix ratio design, stress mechanism, and life cycle assessment","authors":"Chao-qiang Wang, Lin Yu, Hao-ran Wang, Sheng-hui Gao, Jian-Shan Huang, Xi Chen, Meng-sheng Shao","doi":"10.1007/s43452-024-01066-6","DOIUrl":"10.1007/s43452-024-01066-6","url":null,"abstract":"<div><p>This study compared and evaluated the working performance and mechanical properties of LC50 fly ash microbead lightweight high-strength concrete (FLHSC) using fly ash microbeads, cement, water-reducing agent dosage, water–cement ratio, and types of additives as variables. Through reasonable design of expansion tests, bulk density tests, and mechanical strength tests, the basic optimal combination was obtained. The research results indicate that the optimal mix ratio of FLHSC is: fly ash floating beads 230 kg/m<sup>3</sup>, ceramsite 200 kg/m<sup>3</sup>, cement 1200 kg/m<sup>3</sup>, water 360 kg/m<sup>3</sup>, water-reducing agent 20.4 kg/m<sup>3</sup>. The water–binder ratio is selected as 0.3, type II water-reducing agent is selected, and the dosage is 1.7% of the cementitious material. Its slumps is 680 mm, and its dry bulk density is 1562.0 kg/m<sup>3</sup>, the 28-day strength is 52.4 MPa. On this basis, the microstructure and hydration products of FLHSC under different conditions were analyzed in depth using scanning electron microscopy and infrared spectroscopy, and the interface enhancement mechanism and failure mode were studied in depth. It is found that the failure of FLHSC is close to the vertical failure mode, and the crack always passes through the lightweight aggregate. In addition, a life cycle assessment and CO<sub>2</sub> emission calculation from production to application were conducted on FLHSC. In addition, a life cycle assessment and CO<sub>2</sub> emission calculation were conducted on FLHSC from production to application, and the results showed that FLHSC has better environmental benefits than ordinary C50 concrete, with a CO<sub>2</sub> emission of 632.443 (kgCO<sub>2</sub>/t). Finally, the application of LWHSC was analyzed.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Waldemar Łogin, Romana Ewa Śliwa, Waldemar Ziaja, Robert Ostrowski
{"title":"The influence of modification of the geometry of the front surface of the RFSSW tool inner sleeve on the fatigue life of joints during joining clad sheets made of aluminum alloy 2024-T3","authors":"Waldemar Łogin, Romana Ewa Śliwa, Waldemar Ziaja, Robert Ostrowski","doi":"10.1007/s43452-024-00963-0","DOIUrl":"10.1007/s43452-024-00963-0","url":null,"abstract":"<div><p>Refill Friction Stir Spot Welding (RFSSW) has a number of advantages that make it a possible alternative to riveting and resistance welding in aerospace structures, the automotive industry and other applications. Adequate determination of technological parameters which ensure the desired properties of welds and their functioning in various operating conditions requires, among others, appropriate fatigue life of connections. The article presents the results of comparative tests of the mechanical properties of welds (load-bearing capacity and fatigue life at selected three load levels) made with a basic tool (G0) and a tool with a modified geometry (G4). The samples were made of 1.27 mm thick clad sheets of 2024-T3 aluminum alloy with an additional oxide anodic coating. It has been shown that the modified geometry of the working surface of the inner sleeve of the RFSSW tool improves the conditions and course of the plasticization and stirring process of the joined materials. The use of a G4 geometry tool allowed for approximately 30% higher joint load-bearing capacity and approximately twice as long fatigue life (at lower load levels) compared to welds made with the G0 tool.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43452-024-00963-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Failure criterion and compressive constitutive model of seawater concrete incorporating coral aggregate subjected to biaxial loading","authors":"Jiasheng Jiang, Zhiheng Deng, Haifeng Yang, Qingmei Yang, Jingkai Zhou","doi":"10.1007/s43452-024-01076-4","DOIUrl":"10.1007/s43452-024-01076-4","url":null,"abstract":"<div><p>To overcome the lower bearing strength of coral concrete and the high cost of conveying raw materials from the mainland to the island, a new method was presented. This method suggested to apply the coral aggregate instead of the natural coarse aggregate (NCA) in seawater concrete, which was denoted as CAC. In this paper, 18 axial loading prism specimens and 90 cubic lateral loading specimens were cast. Two concrete strengths, three replacement ratios of coral coarse aggregate (CCA) (50%, 75% and 100%) and five biaxial stress ratios (0, 0.15, 0.3, 0.45 and 0.75) were designed. A Digital Image Correlation (DIC) system was used to investigate all the failure patterns and stress–strain curves, which were used to analyze the influence of the above parameters on the peak stress and the peak strain. In addition, the lateral–axial strain relationship and biaxial failure criterion were also established. After determining the biaxial failure surface, a hardening law and a softening law were proposed to describe the uniaxial stress–strain curves based on the Weibull distribution and Guo’s model, respectively. Finally, a new constitutive model for CAC under biaxial stress was developed using the two-dimensional incremental constitutive model. The results indicated that the crack development of CAC was similar to that of natural coarse aggregate concrete (NAC), and the failure patterns of biaxial specimens were related to the biaxial stress ratio. Furthermore, the biaxial stress showed an increase in the peak stress and the peak strain. The increase in CCA replacement weakened the enhancement effect on the peak stress, while it slightly influenced the peak strain. Additionally, the proposed lateral–axial strain model and biaxial failure criterion were in good agreement with the measured results. Through comparison, the proposed biaxial incremental constitutive model was verified using the tested curves.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}