1.4362双相不锈钢钢筋在混凝土中的粘结滑移行为

IF 4.4 3区 工程技术 Q1 ENGINEERING, CIVIL
Xiao Ge, Tai-Lin Liu, Yan-Hui Liu, Zhi-Guo Sun, Yu-Qing Yang, Mohammad M. Kashani, Dong-Sheng Wang
{"title":"1.4362双相不锈钢钢筋在混凝土中的粘结滑移行为","authors":"Xiao Ge,&nbsp;Tai-Lin Liu,&nbsp;Yan-Hui Liu,&nbsp;Zhi-Guo Sun,&nbsp;Yu-Qing Yang,&nbsp;Mohammad M. Kashani,&nbsp;Dong-Sheng Wang","doi":"10.1007/s43452-025-01142-5","DOIUrl":null,"url":null,"abstract":"<div><p>Stainless steel reinforcement is widely used in reinforced concrete structures due to its good corrosion resistance and mechanical properties. In this work, a set of pullout tests on 20 types of specimens are presented. Tensile tests on stainless steel rebars with different diameters and carbon steel rebars are conducted to determine the mechanical properties of rebars. Compressive tests on cubic concrete specimens with different grades are conducted to determine the mechanical properties of concrete. The design of specimens for pullout tests considers the effects of concrete grade, rebar material, rebar diameter, specimen shape, bond length, concrete cover length, rebar position, and stirrups. The damage observation is recorded. The experimental results are compared with the models provided by the Chinese code for the design of concrete structures (GB/50010-2010). With the experimental data, the coefficients of the model are modified by linear fitting. The comparison of bond–slip curves between experimental data and the modified code model is presented. Experimental results indicate that bond strength increases with increasing concrete grades, bar diameter, bond length and concrete cover depth. However, the bond strength between stainless rebar and concrete is smaller than that of carbon steel rebar and concrete. The modified model can produce a better prediction of the bond–slip relation between stainless rebar and concrete.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bond–slip behavior of 1.4362 duplex stainless steel bar embedded in concrete\",\"authors\":\"Xiao Ge,&nbsp;Tai-Lin Liu,&nbsp;Yan-Hui Liu,&nbsp;Zhi-Guo Sun,&nbsp;Yu-Qing Yang,&nbsp;Mohammad M. Kashani,&nbsp;Dong-Sheng Wang\",\"doi\":\"10.1007/s43452-025-01142-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stainless steel reinforcement is widely used in reinforced concrete structures due to its good corrosion resistance and mechanical properties. In this work, a set of pullout tests on 20 types of specimens are presented. Tensile tests on stainless steel rebars with different diameters and carbon steel rebars are conducted to determine the mechanical properties of rebars. Compressive tests on cubic concrete specimens with different grades are conducted to determine the mechanical properties of concrete. The design of specimens for pullout tests considers the effects of concrete grade, rebar material, rebar diameter, specimen shape, bond length, concrete cover length, rebar position, and stirrups. The damage observation is recorded. The experimental results are compared with the models provided by the Chinese code for the design of concrete structures (GB/50010-2010). With the experimental data, the coefficients of the model are modified by linear fitting. The comparison of bond–slip curves between experimental data and the modified code model is presented. Experimental results indicate that bond strength increases with increasing concrete grades, bar diameter, bond length and concrete cover depth. However, the bond strength between stainless rebar and concrete is smaller than that of carbon steel rebar and concrete. The modified model can produce a better prediction of the bond–slip relation between stainless rebar and concrete.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-025-01142-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-025-01142-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

不锈钢钢筋由于具有良好的耐腐蚀性能和力学性能,在钢筋混凝土结构中得到了广泛的应用。在这项工作中,提出了一套20种试件的拉拔试验。对不同直径的不锈钢钢筋和碳钢钢筋进行了拉伸试验,确定了钢筋的力学性能。对不同标号的立方混凝土试件进行了压缩试验,以确定混凝土的力学性能。拉拔试验的试件设计考虑了混凝土等级、钢筋材料、钢筋直径、试件形状、粘结长度、混凝土覆盖长度、钢筋位置和箍筋的影响。记录损伤观察。试验结果与中国混凝土结构设计规范(GB/50010-2010)提供的模型进行了比较。根据实验数据,采用线性拟合的方法对模型的系数进行修正。将实验数据与修正后的代码模型进行了粘结滑移曲线的比较。试验结果表明,粘结强度随混凝土标号、钢筋直径、粘结长度和混凝土覆盖深度的增加而增加。但不锈钢钢筋与混凝土的粘结强度小于碳钢钢筋与混凝土的粘结强度。修正后的模型能较好地预测不锈钢钢筋与混凝土的粘结滑移关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bond–slip behavior of 1.4362 duplex stainless steel bar embedded in concrete

Bond–slip behavior of 1.4362 duplex stainless steel bar embedded in concrete

Stainless steel reinforcement is widely used in reinforced concrete structures due to its good corrosion resistance and mechanical properties. In this work, a set of pullout tests on 20 types of specimens are presented. Tensile tests on stainless steel rebars with different diameters and carbon steel rebars are conducted to determine the mechanical properties of rebars. Compressive tests on cubic concrete specimens with different grades are conducted to determine the mechanical properties of concrete. The design of specimens for pullout tests considers the effects of concrete grade, rebar material, rebar diameter, specimen shape, bond length, concrete cover length, rebar position, and stirrups. The damage observation is recorded. The experimental results are compared with the models provided by the Chinese code for the design of concrete structures (GB/50010-2010). With the experimental data, the coefficients of the model are modified by linear fitting. The comparison of bond–slip curves between experimental data and the modified code model is presented. Experimental results indicate that bond strength increases with increasing concrete grades, bar diameter, bond length and concrete cover depth. However, the bond strength between stainless rebar and concrete is smaller than that of carbon steel rebar and concrete. The modified model can produce a better prediction of the bond–slip relation between stainless rebar and concrete.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Civil and Mechanical Engineering
Archives of Civil and Mechanical Engineering 工程技术-材料科学:综合
CiteScore
6.80
自引率
9.10%
发文量
201
审稿时长
4 months
期刊介绍: Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science. The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics. The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation. In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信