Bayesian Analysis最新文献

筛选
英文 中文
Bayesian Quickest Detection of Credit Card Fraud 信用卡欺诈的贝叶斯快速检测
IF 4.4 2区 数学
Bayesian Analysis Pub Date : 2021-01-01 DOI: 10.1214/20-ba1254
B. Buonaguidi, A. Mira, Herbert Bucheli, V. Vitanis
{"title":"Bayesian Quickest Detection of Credit Card Fraud","authors":"B. Buonaguidi, A. Mira, Herbert Bucheli, V. Vitanis","doi":"10.1214/20-ba1254","DOIUrl":"https://doi.org/10.1214/20-ba1254","url":null,"abstract":"This paper addresses the risk of fraud in credit card transactions by developing a probabilistic model for the quickest detection of illegitimate purchases. Using optimal stopping theory, the goal is to determine the moment, known as disorder or fraud time, at which the continuously monitored process of a consumer’s transactions exhibits a disorder due to fraud, in order to return the best trade-off between two sources of cost: on the one hand, the disorder time should be detected as soon as possible to counteract illegal activities and minimize the loss that banks, merchants and consumers suffer; on the other hand, the frequency of false alarms should be minimized to avoid generating adverse effects for cardholders and to limit the operational and process costs for the card issuers. The proposed approach allows us to score consumers’ transactions and to determine, in a rigorous, personalized and optimal manner, the threshold with which scores are compared to establish whether a purchase is fraudulent.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44977416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Personalized Dynamic Treatment Regimes in Continuous Time: A Bayesian Approach for Optimizing Clinical Decisions with Timing 连续时间的个性化动态治疗方案:优化临床决策的贝叶斯方法
IF 4.4 2区 数学
Bayesian Analysis Pub Date : 2021-01-01 DOI: 10.1214/21-ba1276
William Hua, Hongyuan Mei, S. Zohar, M. Giral, Yanxun Xu
{"title":"Personalized Dynamic Treatment Regimes in Continuous Time: A Bayesian Approach for Optimizing Clinical Decisions with Timing","authors":"William Hua, Hongyuan Mei, S. Zohar, M. Giral, Yanxun Xu","doi":"10.1214/21-ba1276","DOIUrl":"https://doi.org/10.1214/21-ba1276","url":null,"abstract":"Accurate models of clinical actions and their impacts on disease progression are critical for estimating personalized optimal dynamic treatment regimes (DTRs) in medical/health research, especially in managing chronic conditions. Traditional statistical methods for DTRs usually focus on estimating the optimal treatment or dosage at each given medical intervention, but overlook the important question of “when this intervention should happen.” We fill this gap by developing a two-step Bayesian approach to optimize clinical decisions with timing. In the first step, we build a generative model for a sequence of medical interventions—which are discrete events in continuous time—with a marked temporal point process (MTPP) where the mark is the assigned treatment or dosage. Then this clinical action model is embedded into a Bayesian joint framework where the other components model clinical observations including longitudinal medical measurements and time-to-event data conditional on treatment histories. In the second step, we propose a policy gradient method to learn the personalized optimal clinical decision that maximizes the patient survival by interacting the MTPP with the model on clinical observations while accounting for uncertainties in clinical observations learned from the posterior inference of the Bayesian joint model in the first step. A signature application of the proposed approach is to schedule follow-up visitations and assign a dosage at each visitation for patients after kidney transplantation. We evaluate our approach with comparison to alternative methods on both simulated and real-world datasets. In our experiments, the personalized decisions made by the proposed method are clinically useful: they are interpretable and successfully help improve patient survival.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":"1 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66086047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Bayesian Tensor Response Regression with an Application to Brain Activation Studies 贝叶斯张量响应回归及其在脑激活研究中的应用
IF 4.4 2区 数学
Bayesian Analysis Pub Date : 2021-01-01 DOI: 10.1214/21-ba1280
Rajarshi Guhaniyogi, Daniel Spencer
{"title":"Bayesian Tensor Response Regression with an Application to Brain Activation Studies","authors":"Rajarshi Guhaniyogi, Daniel Spencer","doi":"10.1214/21-ba1280","DOIUrl":"https://doi.org/10.1214/21-ba1280","url":null,"abstract":". This article proposes a novel Bayesian implementation of regression with multi-dimensional array (tensor) response on scalar covariates. The recent emergence of complex datasets in various disciplines presents a pressing need to devise regression models with a tensor valued response. This article considers one such application of detecting neuronal activation in fMRI experiments in presence of tensor valued brain images and scalar predictors. The overarching goal in this application is to identify spatial regions (voxels) of a brain activated by an external stimulus. In such and related applications, we propose to regress responses from all cells (or voxels in brain activation studies) together as a tensor response on scalar predictors, accounting for the structural information inherent in the tensor response. To estimate model parameters with proper cell specific shrinkage, we propose a novel multiway stick breaking shrinkage prior distribution on tensor structured regression coefficients, enabling identification of cells which are related to the predictors. The major novelty of this article lies in the theoretical study of the contraction properties for the proposed shrinkage prior in the tensor response regression when the number of cells grows faster than the sample size. Specifically, estimates of tensor regression coefficients are shown to be asymptotically concen-trated around the true sparse tensor in L 2 -sense under mild assumptions. Various simulation studies and analysis of a brain activation data empirically verify desirable performance of the proposed model in terms of estimation and inference on cell-level parameters.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43385168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Biclustering via Semiparametric Bayesian Inference 基于半参数贝叶斯推理的双聚类
IF 4.4 2区 数学
Bayesian Analysis Pub Date : 2021-01-01 DOI: 10.1214/21-ba1284
Alejandro Murua, F. Quintana
{"title":"Biclustering via Semiparametric Bayesian Inference","authors":"Alejandro Murua, F. Quintana","doi":"10.1214/21-ba1284","DOIUrl":"https://doi.org/10.1214/21-ba1284","url":null,"abstract":"Motivated by classes of problems frequently found in the analysis of gene expression data, we propose a semiparametric Bayesian model to detect biclusters, that is, subsets of individuals sharing similar patterns over a set of conditions. Our approach is based on the well-known plaid model by Lazzeroni and Owen (2002). By assuming a truncated stick-breaking prior we also find the number of biclusters present in the data as part of the inference. Evidence from a simulation study shows that the model is capable of correctly detecting biclusters and performs well compared to some competing approaches. The flexibility of the proposed prior is demonstrated with applications to the analysis of gene expression data (continuous responses) and histone modifications data (count responses).","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48464947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Error Control of the Numerical Posterior with Bayes Factors in Bayesian Uncertainty Quantification 贝叶斯不确定性量化中贝叶斯因子的数值后验误差控制
IF 4.4 2区 数学
Bayesian Analysis Pub Date : 2021-01-01 DOI: 10.1214/20-ba1255
Marcos A. Capistrán, J. Christen, M. Daza-Torres, Hugo Flores-Arguedas, J. Montesinos-López
{"title":"Error Control of the Numerical Posterior with Bayes Factors in Bayesian Uncertainty Quantification","authors":"Marcos A. Capistrán, J. Christen, M. Daza-Torres, Hugo Flores-Arguedas, J. Montesinos-López","doi":"10.1214/20-ba1255","DOIUrl":"https://doi.org/10.1214/20-ba1255","url":null,"abstract":". In this paper, we address the numerical posterior error control problem for the Bayesian approach to inverse problems or recently known as Bayesian Uncertainty Quantification (UQ). We generalize the results of Capistr´an et al. (2016) to (a priori) expected Bayes factors (BF) and in a more general, infinite-dimensional setting. In this inverse problem, the unavoidable numerical approximation of the Forward Map (FM, i.e., the regressor function), arising from the numerical solution of a system of differential equations, demands error estimates of the corresponding approximate numerical posterior distribution. Our approach is to make such comparisons in the setting of Bayesian model selection and BFs. The main result of this paper is a bound on the absolute global error tolerated by the numerical solver of the FM in order to keep the BF of the numerical versus the theoretical posterior near one. For two examples, we provide a detailed analysis of the computation and implementation of the introduced bound. Furthermore, we show that the resulting numerical posterior turns out to be nearly identical from the theoretical posterior, given the control of the BF near one.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42140508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Optimal Shrinkage Estimation of Predictive Densities Under α-Divergences α-散度下预测密度的最优收缩估计
IF 4.4 2区 数学
Bayesian Analysis Pub Date : 2021-01-01 DOI: 10.1214/21-BA1264
E. George, Gourab Mukherjee, Keisuke Yano
{"title":"Optimal Shrinkage Estimation of Predictive Densities Under α-Divergences","authors":"E. George, Gourab Mukherjee, Keisuke Yano","doi":"10.1214/21-BA1264","DOIUrl":"https://doi.org/10.1214/21-BA1264","url":null,"abstract":"We consider the problem of estimating the predictive density in a heteroskedastic Gaussian model under general divergence loss. Based on a conjugate hierarchical set-up, we consider generic classes of shrinkage predictive densities that are governed by location and scale hyper-parameters. For any α-divergence loss, we propose a risk-estimation based methodology for tuning these shrinkage hyper-parameters. Our proposed predictive density estimators enjoy optimal asymptotic risk properties that are in concordance with the optimal shrinkage calibration point estimation results established by Xie, Kou, and Brown (2012) for heteroskedastic hierarchical models. These α-divergence risk optimality properties of our proposed predictors are not shared by empirical Bayes predictive density estimators that are calibrated by traditional methods such as maximum likelihood and method of moments. We conduct several numerical studies to compare the non-asymptotic performance of our proposed predictive density estimators with other competing methods and obtain encouraging results. MSC2020 subject classifications: Primary 62L20; secondary 60F15, 60G42.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46644095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Perfect Sampling of the Posterior in the Hierarchical Pitman-Yor Process. 分层Pitman-Yor过程中后验的完美抽样。
IF 4.4 2区 数学
Bayesian Analysis Pub Date : 2021-01-01 DOI: 10.1214/21-BA1269
S. Bacallado, S. Favaro, Samuel Power, L. Trippa
{"title":"Perfect Sampling of the Posterior in the Hierarchical Pitman-Yor Process.","authors":"S. Bacallado, S. Favaro, Samuel Power, L. Trippa","doi":"10.1214/21-BA1269","DOIUrl":"https://doi.org/10.1214/21-BA1269","url":null,"abstract":"The predictive probabilities of the hierarchical Pitman-Yor process are approximated through Monte Carlo algorithms that exploits the Chinese Restaurant Franchise (CRF) representation. However, in order to simulate the posterior distribution of the hierarchical Pitman-Yor process, a set of auxiliary variables representing the arrangement of customers in tables of the CRF must be sampled through Markov chain Monte Carlo. This paper develops a perfect sampler for these latent variables employing ideas from the Propp-Wilson algorithm and evaluates its average running time by extensive simulations. The simulations reveal a significant dependence of running time on the parameters of the model, which exhibits sharp transitions. The algorithm is compared to simpler Gibbs sampling procedures, as well as a procedure for unbiased Monte Carlo estimation proposed by Glynn and Rhee. We illustrate its use with an example in microbial genomics studies.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":"129 1","pages":"685-709"},"PeriodicalIF":4.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66085791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On a Dirichlet Process Mixture Representation of Phase-Type Distributions 相型分布的Dirichlet过程混合表示
IF 4.4 2区 数学
Bayesian Analysis Pub Date : 2021-01-01 DOI: 10.1214/21-BA1272
Daniel Ayala, Leonardo Jofré, Luis Gutiérrez, R. H. Mena
{"title":"On a Dirichlet Process Mixture Representation of Phase-Type Distributions","authors":"Daniel Ayala, Leonardo Jofré, Luis Gutiérrez, R. H. Mena","doi":"10.1214/21-BA1272","DOIUrl":"https://doi.org/10.1214/21-BA1272","url":null,"abstract":"An explicit representation of phase-type distributions as an infinite mixture of Erlang distributions is introduced. The representation unveils a novel and useful connection between a class of Bayesian nonparametric mixture models and phase-type distributions. In particular, this sheds some light on two hot topics, estimation techniques for phase-type distributions, and the availability of closed-form expressions for some functionals related to Dirichlet process mixture models. The power of this connection is illustrated via a posterior inference algorithm to estimate phase-type distributions, avoiding some difficulties with the simulation of latent Markov jump processes, commonly encountered in phase-type Bayesian inference. On the other hand, closed-form expressions for functionals of Dirichlet process mixture models are illustrated with density and renewal function estimation, related to the optimal salmon weight distribution of an aquaculture study.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":"-1 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66085947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Nonstationary and Nonparametric Covariance Estimation for Large Spatial Data 大空间数据的贝叶斯非平稳和非参数协方差估计
IF 4.4 2区 数学
Bayesian Analysis Pub Date : 2020-12-10 DOI: 10.1214/21-ba1273
Brian Kidd, M. Katzfuss
{"title":"Bayesian Nonstationary and Nonparametric Covariance Estimation for Large Spatial Data","authors":"Brian Kidd, M. Katzfuss","doi":"10.1214/21-ba1273","DOIUrl":"https://doi.org/10.1214/21-ba1273","url":null,"abstract":"In spatial statistics, it is often assumed that the spatial field of interest is stationary and its covariance has a simple parametric form, but these assumptions are not appropriate in many applications. Given replicate observations of a Gaussian spatial field, we propose nonstationary and nonparametric Bayesian inference on the spatial dependence. Instead of estimating the quadratic (in the number of spatial locations) entries of the covariance matrix, the idea is to infer a near-linear number of nonzero entries in a sparse Cholesky factor of the precision matrix. Our prior assumptions are motivated by recent results on the exponential decay of the entries of this Cholesky factor for Matern-type covariances under a specific ordering scheme. Our methods are highly scalable and parallelizable. We conduct numerical comparisons and apply our methodology to climate-model output, enabling statistical emulation of an expensive physical model.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46843087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
A Dirichlet Process Mixture Model for Non-Ignorable Dropout 不可忽略衰减的Dirichlet过程混合模型
IF 4.4 2区 数学
Bayesian Analysis Pub Date : 2020-12-01 DOI: 10.1214/19-ba1181
Camille M. Moore, N. Carlson, S. MaWhinney, S. Kreidler
{"title":"A Dirichlet Process Mixture Model for Non-Ignorable Dropout","authors":"Camille M. Moore, N. Carlson, S. MaWhinney, S. Kreidler","doi":"10.1214/19-ba1181","DOIUrl":"https://doi.org/10.1214/19-ba1181","url":null,"abstract":". Longitudinal cohorts are a valuable resource for studying HIV disease progression; however, dropout is common in these studies. Subjects often fail to re-turn for visits due to disease progression, loss to follow-up, or death. When dropout depends on unobserved outcomes, data are missing not at random, and results from standard longitudinal data analyses can be biased. Several methods have been proposed to adjust for non-ignorable dropout; however, many of these approaches rely on parametric assumptions about the distribution of dropout times and the functional form of the relationship between the outcome and dropout time. More flexible approaches may be needed when the distribution of dropout times does not follow a known distribution or violates proportional hazards assumptions, or when the relationship between the outcome and dropout times does not have a simple polynomial form. We propose a Bayesian semi-parametric Dirichlet process mixture model to flexibly model the relationship between dropout time and the outcome and show that more accurate inference can be obtained by non-parametrically modeling the distribution of subject-specific effects as well as the distribution of dropout times. Results from simulation studies as well as an application to a longitudinal HIV cohort study database illustrate the strengths of our Bayesian semi-parametric approach.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49479134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信