基于半参数贝叶斯推理的双聚类

IF 4.9 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Alejandro Murua, F. Quintana
{"title":"基于半参数贝叶斯推理的双聚类","authors":"Alejandro Murua, F. Quintana","doi":"10.1214/21-ba1284","DOIUrl":null,"url":null,"abstract":"Motivated by classes of problems frequently found in the analysis of gene expression data, we propose a semiparametric Bayesian model to detect biclusters, that is, subsets of individuals sharing similar patterns over a set of conditions. Our approach is based on the well-known plaid model by Lazzeroni and Owen (2002). By assuming a truncated stick-breaking prior we also find the number of biclusters present in the data as part of the inference. Evidence from a simulation study shows that the model is capable of correctly detecting biclusters and performs well compared to some competing approaches. The flexibility of the proposed prior is demonstrated with applications to the analysis of gene expression data (continuous responses) and histone modifications data (count responses).","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Biclustering via Semiparametric Bayesian Inference\",\"authors\":\"Alejandro Murua, F. Quintana\",\"doi\":\"10.1214/21-ba1284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by classes of problems frequently found in the analysis of gene expression data, we propose a semiparametric Bayesian model to detect biclusters, that is, subsets of individuals sharing similar patterns over a set of conditions. Our approach is based on the well-known plaid model by Lazzeroni and Owen (2002). By assuming a truncated stick-breaking prior we also find the number of biclusters present in the data as part of the inference. Evidence from a simulation study shows that the model is capable of correctly detecting biclusters and performs well compared to some competing approaches. The flexibility of the proposed prior is demonstrated with applications to the analysis of gene expression data (continuous responses) and histone modifications data (count responses).\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ba1284\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-ba1284","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

受基因表达数据分析中经常发现的一类问题的启发,我们提出了一个半参数贝叶斯模型来检测双聚类,即在一组条件下共享相似模式的个体子集。我们的方法基于Lazzeroni和Owen(2002)的著名格子模型。通过假设截断的断棒先验,我们还发现了数据中存在的双簇的数量,作为推断的一部分。来自模拟研究的证据表明,该模型能够正确检测双簇,并且与一些竞争方法相比表现良好。通过应用于基因表达数据(连续响应)和组蛋白修饰数据(计数响应)的分析,证明了所提出的先验的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biclustering via Semiparametric Bayesian Inference
Motivated by classes of problems frequently found in the analysis of gene expression data, we propose a semiparametric Bayesian model to detect biclusters, that is, subsets of individuals sharing similar patterns over a set of conditions. Our approach is based on the well-known plaid model by Lazzeroni and Owen (2002). By assuming a truncated stick-breaking prior we also find the number of biclusters present in the data as part of the inference. Evidence from a simulation study shows that the model is capable of correctly detecting biclusters and performs well compared to some competing approaches. The flexibility of the proposed prior is demonstrated with applications to the analysis of gene expression data (continuous responses) and histone modifications data (count responses).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信