{"title":"具有子模型收缩的贝叶斯生存树集成","authors":"A. Linero, Piyali Basak, Yinpu Li, D. Sinha","doi":"10.1214/21-ba1285","DOIUrl":null,"url":null,"abstract":"We consider Bayesian nonparametric estimation of a survival time subject to right-censoring in the presence of potentially high-dimensional predictors. We argue that several approaches, such as random survival forests and existing Bayesian nonparametric approaches, possess several drawbacks, including: computational difficulties; lack of known theoretical properties; and ineffectiveness at filtering out irrelevant predictors. We propose two models based on the Bayesian additive regression trees (BART) framework. The first, Modulated BART (MBART), is fully-nonparametric and models the failure time as the first occurrence of a non-homogeneous Poisson process. The second, CoxBART, uses a Bayesian implementation of Cox’s partial likelihood. These models are adapted to high-dimensional predictors, have default prior specifications, and require simple modifications of existing BART methods to implement. We show the effectiveness of these methods on simulated and benchmark datasets. We also establish that, for a simplified variant of MBART, the posterior distribution contracts at a near-minimax optimal rate in a high-dimensional sparse asymptotic regime.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Bayesian Survival Tree Ensembles with Submodel Shrinkage\",\"authors\":\"A. Linero, Piyali Basak, Yinpu Li, D. Sinha\",\"doi\":\"10.1214/21-ba1285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Bayesian nonparametric estimation of a survival time subject to right-censoring in the presence of potentially high-dimensional predictors. We argue that several approaches, such as random survival forests and existing Bayesian nonparametric approaches, possess several drawbacks, including: computational difficulties; lack of known theoretical properties; and ineffectiveness at filtering out irrelevant predictors. We propose two models based on the Bayesian additive regression trees (BART) framework. The first, Modulated BART (MBART), is fully-nonparametric and models the failure time as the first occurrence of a non-homogeneous Poisson process. The second, CoxBART, uses a Bayesian implementation of Cox’s partial likelihood. These models are adapted to high-dimensional predictors, have default prior specifications, and require simple modifications of existing BART methods to implement. We show the effectiveness of these methods on simulated and benchmark datasets. We also establish that, for a simplified variant of MBART, the posterior distribution contracts at a near-minimax optimal rate in a high-dimensional sparse asymptotic regime.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ba1285\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-ba1285","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bayesian Survival Tree Ensembles with Submodel Shrinkage
We consider Bayesian nonparametric estimation of a survival time subject to right-censoring in the presence of potentially high-dimensional predictors. We argue that several approaches, such as random survival forests and existing Bayesian nonparametric approaches, possess several drawbacks, including: computational difficulties; lack of known theoretical properties; and ineffectiveness at filtering out irrelevant predictors. We propose two models based on the Bayesian additive regression trees (BART) framework. The first, Modulated BART (MBART), is fully-nonparametric and models the failure time as the first occurrence of a non-homogeneous Poisson process. The second, CoxBART, uses a Bayesian implementation of Cox’s partial likelihood. These models are adapted to high-dimensional predictors, have default prior specifications, and require simple modifications of existing BART methods to implement. We show the effectiveness of these methods on simulated and benchmark datasets. We also establish that, for a simplified variant of MBART, the posterior distribution contracts at a near-minimax optimal rate in a high-dimensional sparse asymptotic regime.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.