{"title":"Bootstrap tests for simultaneous monotone ordering of effects in a two-way ANOVA","authors":"Raju Dey, Anjana Mondal, Somesh Kumar","doi":"10.1002/bimj.202300238","DOIUrl":"https://doi.org/10.1002/bimj.202300238","url":null,"abstract":"<p>In a two-way additive analysis of variance (ANOVA) model, we consider the problem of testing for homogeneity of both row and column effects against their simultaneous ordering. The error variances are assumed to be heterogeneous with unbalanced samples in each cell. Two simultaneous test procedures are developed—the first one using the likelihood ratio test (LRT) statistics of two independent hypotheses and another based on the consecutive pairwise differences of estimators of effects. The parametric bootstrap (PB) approach is used to find critical points of both the tests and the asymptotic accuracy of the bootstrap is established. An extensive simulation study shows that the proposed tests achieve the nominal size and have very good power performance. The robustness of the tests is also analyzed under deviation from normality. An “R” package is developed and shared on “GitHub” for ease of implementation of users. The proposed tests are illustrated using a real data set on the mortality due to alcoholic liver disease and it is shown that age and gender have a significant impact on the increasing incidence of mortality.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Senmiao Ni, Zihang Zhong, Zhiwei Jiang, Yang Zhao, Jingwei Wu, Hao Yu, Jianling Bai
{"title":"Beta spending function based on conditional power in group sequential design","authors":"Senmiao Ni, Zihang Zhong, Zhiwei Jiang, Yang Zhao, Jingwei Wu, Hao Yu, Jianling Bai","doi":"10.1002/bimj.202300094","DOIUrl":"https://doi.org/10.1002/bimj.202300094","url":null,"abstract":"<p>Conditional power (CP) serves as a widely utilized approach for futility monitoring in group sequential designs. However, adopting the CP methods may lead to inadequate control of the type II error rate at the desired level. In this study, we introduce a flexible beta spending function tailored to regulate the type II error rate while employing CP based on a predetermined standardized effect size for futility monitoring (a so-called CP-beta spending function). This function delineates the expenditure of type II error rate across the entirety of the trial. Unlike other existing beta spending functions, the CP-beta spending function seamlessly incorporates beta spending concept into the CP framework, facilitating precise stagewise control of the type II error rate during futility monitoring. In addition, the stopping boundaries derived from the CP-beta spending function can be calculated via integration akin to other traditional beta spending function methods. Furthermore, the proposed CP-beta spending function accommodates various thresholds on the CP-scale at different stages of the trial, ensuring its adaptability across different information time scenarios. These attributes render the CP-beta spending function competitive among other forms of beta spending functions, making it applicable to any trials in group sequential designs with straightforward implementation. Both simulation study and example from an acute ischemic stroke trial demonstrate that the proposed method accurately captures expected power, even when the initially determined sample size does not consider futility stopping, and exhibits a good performance in maintaining overall type I error rates for evident futility.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A framework to select tuning parameters for nonparametric derivative estimation","authors":"Sisheng Liu, Xiaoli Kong","doi":"10.1002/bimj.202300039","DOIUrl":"https://doi.org/10.1002/bimj.202300039","url":null,"abstract":"<p>In this paper, we propose a general framework to select tuning parameters for the nonparametric derivative estimation. The new framework broadens the scope of the previously proposed generalized <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 <annotation>$C_p$</annotation>\u0000 </semantics></math> criterion by replacing the empirical derivative with any other linear nonparametric smoother. We provide the theoretical support of the proposed derivative estimation in a random design and justify it through simulation studies. The practical application of the proposed framework is demonstrated in the study of the age effect on hippocampal gray matter volume in healthy adults from the IXI dataset and the study of the effect of age and body mass index on blood pressure from the Pima Indians dataset.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Bayesian model-based reduced major axis regression","authors":"Zhihua Ma, Ming-Hui Chen","doi":"10.1002/bimj.202300279","DOIUrl":"https://doi.org/10.1002/bimj.202300279","url":null,"abstract":"<p>Reduced major axis (RMA) regression, widely used in the fields of zoology, botany, ecology, biology, spectroscopy, and among others, outweighs the ordinary least square regression by relaxing the assumption that the covariates are without measurement errors. A Bayesian implementation of the RMA regression is presented in this paper, and the equivalence of the estimates of the parameters under the Bayesian and the frequentist frameworks is proved. This model-based Bayesian RMA method is advantageous since the posterior estimates, the standard deviations, as well as the credible intervals of the estimates can be obtained through Markov chain Monte Carlo methods directly. In addition, it is straightforward to extend to the multivariate RMA case. The performance of the Bayesian RMA approach is evaluated in the simulation study, and, finally, the proposed method is applied to analyze a dataset in the plantation.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140348596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gregor Buch, Andreas Schulz, Irene Schmidtmann, Konstantin Strauch, Philipp S. Wild
{"title":"Interpretability of bi-level variable selection methods","authors":"Gregor Buch, Andreas Schulz, Irene Schmidtmann, Konstantin Strauch, Philipp S. Wild","doi":"10.1002/bimj.202300063","DOIUrl":"https://doi.org/10.1002/bimj.202300063","url":null,"abstract":"<p>Variable selection is usually performed to increase interpretability, as sparser models are easier to understand than full models. However, a focus on sparsity is not always suitable, for example, when features are related due to contextual similarities or high correlations. Here, it may be more appropriate to identify groups and their predictive members, a task that can be accomplished with bi-level selection procedures. To investigate whether such techniques lead to increased interpretability, group exponential LASSO (GEL), sparse group LASSO (SGL), composite minimax concave penalty (cMCP), and least absolute shrinkage, and selection operator (LASSO) as reference methods were used to select predictors in time-to-event, regression, and classification tasks in bootstrap samples from a cohort of 1001 patients. Different groupings based on prior knowledge, correlation structure, and random assignment were compared in terms of selection relevance, group consistency, and collinearity tolerance. The results show that bi-level selection methods are superior to LASSO in all criteria. The cMCP demonstrated superiority in selection relevance, while SGL was convincing in group consistency. An all-round capacity was achieved by GEL: the approach jointly selected correlated and content-related predictors while maintaining high selection relevance. This method seems recommendable when variables are grouped, and interpretation is of primary interest.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140192168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moses Mwangi, Geert Molenberghs, Edmund Njeru Njagi, Samuel Mwalili, Roel Braekers, Alvaro Jose Florez, Susan Gachau, Zipporah N. Bukania, Geert Verbeke
{"title":"Pairwise fitting of piecewise mixed models for the joint modeling of multivariate longitudinal outcomes, in a randomized crossover trial","authors":"Moses Mwangi, Geert Molenberghs, Edmund Njeru Njagi, Samuel Mwalili, Roel Braekers, Alvaro Jose Florez, Susan Gachau, Zipporah N. Bukania, Geert Verbeke","doi":"10.1002/bimj.202200333","DOIUrl":"10.1002/bimj.202200333","url":null,"abstract":"<p>Many statistical models have been proposed in the literature for the analysis of longitudinal data. One may propose to model two or more correlated longitudinal processes simultaneously, with a goal of understanding their association over time. Joint modeling is then required to carefully study the association structure among the outcomes as well as drawing joint inferences about the different outcomes. In this study, we sought to model the associations among six nutrition outcomes while circumventing the computational challenge posed by their clustered and high-dimensional nature. We analyzed data from a 2 <math>\u0000 <semantics>\u0000 <mo>×</mo>\u0000 <annotation>$times$</annotation>\u0000 </semantics></math> 2 randomized crossover trial conducted in Kenya, to compare the effect of high-dose and low-dose iodine in household salt on systolic blood pressure (SBP) and diastolic blood pressure (DBP) in women of reproductive age and their household matching pair of school-aged children. Two additional outcomes, namely, urinary iodine concentration (UIC) in women and children were measured repeatedly to monitor the amount of iodine excreted through urine. We extended the model proposed by Mwangi et al. (2021, <i>Communications in Statistics: Case Studies, Data Analysis and Applications</i>, <i>7</i>(3), 413–431) allowing flexible piecewise joint models for six outcomes to depend on separate random effects, which are themselves correlated. This entailed fitting 15 bivariate general linear mixed models and deriving inference for the joint model using pseudo-likelihood theory. We analyzed the outcomes separately and jointly using piecewise linear mixed-effects (PLME) model and further validated the results using current state-of-the-art Jones and Kenward methodology (JKME model) used for analyzing randomized crossover trials. The results indicate that high-dose iodine in salt significantly reduced blood pressure (BP) compared to low-dose iodine in salt. Estimates for the random effects and residual error components showed that SBP and DBP had strong positive correlation, with effect of the random slope indicating that significantly related outcomes are strongly associated in their evolution. There was a moderately strong inverse relationship between evolutions of UIC and BP both in women and children. These findings confirmed the original hypothesis that high-dose iodine salt has significant lowering effect on BP. We further sought to evaluate the performance of our proposed PLME model against the widely used JKME model, within the multivariate joint modeling framework through a simulation study mimicking a <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>×</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$2times 2$</annotation>\u0000 </semantics></math> crossover design. From our findings, the multivariate joint PLME model p","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Explained variation and degrees of necessity and of sufficiency for competing risks survival data","authors":"Andreas Gleiss, Michael Gnant, Michael Schemper","doi":"10.1002/bimj.202300140","DOIUrl":"10.1002/bimj.202300140","url":null,"abstract":"<p>In this contribution, the Schemper–Henderson measure of explained variation for survival outcomes is extended to accommodate competing events (CEs) in addition to events of interest. The extension is achieved by moving from the unconditional and conditional survival functions of the original measure to unconditional and conditional cumulative incidence functions, the latter obtained, for example, from Fine and Gray models. In the absence of CEs, the original measure is obtained as a special case. We define explained variation on the population level and provide two different types of estimates. Recently, the authors have achieved a multiplicative decomposition of explained variation into degrees of necessity and degrees of sufficiency. These measures are also extended to the case of competing risks survival data. A SAS macro and an R function are provided to facilitate application. Interesting empirical properties of the measures are explored on the population level and by an extensive simulation study. Advantages of the approach are exemplified by an Austrian study of breast cancer with a high proportion of CEs.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300140","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonparametric analysis of delayed treatment effects using single-crossing constraints","authors":"Nicholas C. Henderson, Kijoeng Nam, Dai Feng","doi":"10.1002/bimj.202200165","DOIUrl":"10.1002/bimj.202200165","url":null,"abstract":"<p>Clinical trials involving novel immuno-oncology therapies frequently exhibit survival profiles which violate the proportional hazards assumption due to a delay in treatment effect, and, in such settings, the survival curves in the two treatment arms may have a crossing before the two curves eventually separate. To flexibly model such scenarios, we describe a nonparametric approach for estimating the treatment arm-specific survival functions which constrains these two survival functions to cross at most once without making any additional assumptions about how the survival curves are related. A main advantage of our approach is that it provides an estimate of a crossing time if such a crossing exists, and, moreover, our method generates interpretable measures of treatment benefit including crossing-conditional survival probabilities and crossing-conditional estimates of restricted residual mean life. Our estimates of these measures may be used together with efficacy measures from a primary analysis to provide further insight into differences in survival across treatment arms. We demonstrate the use and effectiveness of our approach with a large simulation study and an analysis of reconstructed outcomes from a recent combination therapy trial.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202200165","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139967911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anne-Laure Boulesteix, Mark Baillie, Dominic Edelmann, Leonhard Held, Tim P. Morris, Willi Sauerbrei
{"title":"Editorial for the special collection “Towards neutral comparison studies in methodological research”","authors":"Anne-Laure Boulesteix, Mark Baillie, Dominic Edelmann, Leonhard Held, Tim P. Morris, Willi Sauerbrei","doi":"10.1002/bimj.202400031","DOIUrl":"10.1002/bimj.202400031","url":null,"abstract":"<p>Biomedical researchers are frequently faced with an array of methods they might potentially use for the analysis and/or design of studies. It can be difficult to understand the absolute and relative merits of candidate methods beyond one's own particular interests and expertise. Choosing a method can be difficult even in simple settings but an increase in the volume of data collected, computational power, and methods proposed in the literature makes the choice all the more difficult. In this context, it is crucial to provide researchers with evidence-supported guidance derived from appropriately designed studies comparing statistical methods in a neutral way, in particular through well-designed simulation studies.</p><p>While neutral comparison studies are an essential cornerstone toward the improvement of this situation, a number of challenges remain with regard to their methodology and acceptance. Numerous difficulties arise when designing, conducting, and reporting neutral comparison studies. Practical experience is still scarce and literature on these issues almost inexistent. Furthermore, authors of neutral comparison studies are often faced with incomprehension from a large part of the scientific community, which is more interested in the development of “new” approaches and evaluates the importance of research primarily based on the novelty of the presented methods. Consequently, meaningful comparisons of competing approaches (especially reproducible studies including publicly available code and data) are rarely available and evidence-supported state of the art guidance is largely missing, often resulting in the use of suboptimal methods in practice.</p><p>The final special collection includes 11 contributions of the first type and 12 of the second, covering a wide range of methods and issues. Our expectations were fully met and even exceeded! We thank the authors for these outstanding contributions and the many reviewers for their very helpful comments.</p><p>The papers from the first category explore a wide range of highly relevant biostatistical methods. They present interesting implementations of various neutrality concepts and methodologies aiming at more reliability and transparency, for example, study protocols.</p><p>The topics include methodology to analyze data from randomized trials, such as the use of baseline covariates to analyze small cluster-randomized trials with a rare binary outcome (Zhu et al.) and the characterization of treatment effect heterogeneity (Sun et al.). The special collection also presents comparison studies that explore a variety of modeling approaches in other contexts. These include the analysis of survival data with nonproportional hazards with propensity score–weighted methods (Handorf et al.), the impact of the matching algorithm on the treatment effect estimate in causal analyses based on the propensity score (Heinz et al.), statistical methods for analyzing longitudinally measured ordinal outcomes","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202400031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}