Boundary Value Problems最新文献

筛选
英文 中文
Enhanced shifted Jacobi operational matrices of derivatives: spectral algorithm for solving multiterm variable-order fractional differential equations 导数的增强移位雅可比运算矩阵:求解多项变阶分数阶微分方程的谱算法
4区 数学
Boundary Value Problems Pub Date : 2023-11-14 DOI: 10.1186/s13661-023-01796-1
H. M. Ahmed
{"title":"Enhanced shifted Jacobi operational matrices of derivatives: spectral algorithm for solving multiterm variable-order fractional differential equations","authors":"H. M. Ahmed","doi":"10.1186/s13661-023-01796-1","DOIUrl":"https://doi.org/10.1186/s13661-023-01796-1","url":null,"abstract":"Abstract This paper presents a new way to solve numerically multiterm variable-order fractional differential equations (MTVOFDEs) with initial conditions by using a class of modified shifted Jacobi polynomials (MSJPs). As their defining feature, MSJPs satisfy the given initial conditions. A key aspect of our methodology involves the construction of operational matrices (OMs) for ordinary derivatives (ODs) and variable-order fractional derivatives (VOFDs) of MSJPs and the application of the spectral collocation method (SCM). These constructions enable efficient and accurate numerical computation. We establish the error analysis and the convergence of the proposed algorithm, providing theoretical guarantees for its effectiveness. To demonstrate the applicability and accuracy of our method, we present five numerical examples. Through these examples, we compare the results obtained with other published results, confirming the superiority of our method in terms of accuracy and efficiency. The suggested algorithm yields very accurate agreement between the approximate and exact solutions, which are shown in tables and graphs.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134900899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decay of the 3D Lüst model 三维<s:1> st模型的衰减
4区 数学
Boundary Value Problems Pub Date : 2023-11-10 DOI: 10.1186/s13661-023-01797-0
Ying Sheng
{"title":"Decay of the 3D Lüst model","authors":"Ying Sheng","doi":"10.1186/s13661-023-01797-0","DOIUrl":"https://doi.org/10.1186/s13661-023-01797-0","url":null,"abstract":"Abstract In this paper, we consider the time-decay rate of the strong solution to the Cauchy problem for the three-dimensional Lüst model. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. The $dot{H}^{-s}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mover> <mml:mi>H</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi>s</mml:mi> </mml:mrow> </mml:msup> </mml:math> ( $0leq s<frac{3}{2}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mn>0</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>s</mml:mi> <mml:mo><</mml:mo> <mml:mfrac> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> <mml:mn>2</mml:mn> </mml:mfrac> </mml:math> ) negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135138378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamical behavior of perturbed Gerdjikov–Ivanov equation through different techniques 摄动Gerdjikov-Ivanov方程的动力学行为
4区 数学
Boundary Value Problems Pub Date : 2023-11-09 DOI: 10.1186/s13661-023-01792-5
Hamood Ur Rehman, Ifrah Iqbal, M. Mirzazadeh, Salma Haque, Nabil Mlaiki, Wasfi Shatanawi
{"title":"Dynamical behavior of perturbed Gerdjikov–Ivanov equation through different techniques","authors":"Hamood Ur Rehman, Ifrah Iqbal, M. Mirzazadeh, Salma Haque, Nabil Mlaiki, Wasfi Shatanawi","doi":"10.1186/s13661-023-01792-5","DOIUrl":"https://doi.org/10.1186/s13661-023-01792-5","url":null,"abstract":"Abstract The objective of this work is to investigate the perturbed Gerdjikov–Ivanov (GI) equation along spatio-temporal dispersion which explains the dynamics of soliton dispersion and evolution of propagation distance in optical fibers, photonic crystal fibers (PCF), and metamaterials. The algorithms, namely hyperbolic extended function method and generalized Kudryashov’s method, are constructed to obtain the new soliton solutions. The dark, bright, periodic, and singular solitons are derived of the considered equation with the appropriate choice of parameters. These results are novel, confirm the stability of optical solitons, and have not been studied earlier. The explanation of evaluated results is given by sketching the various graphs in 3D, contour and 2D plots by using Maple 18. Graphical simulations divulge that varying the wave velocity affects the dynamical behaviors of the model. In summary, this research adds to our knowledge on how the perturbed GI equation with spatio-temporal dispersion behaves. The obtained soliton solutions and the methods offer computational tools for further analysis in this field. This work represents an advancement in our understanding of soliton dynamics and their applications in photonic systems.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and multiplicity of solutions for the Cauchy problem of a fractional Lorentz force equation 分数阶洛伦兹力方程柯西问题解的存在性和多重性
4区 数学
Boundary Value Problems Pub Date : 2023-10-31 DOI: 10.1186/s13661-023-01793-4
Xiaohui Shen, Tiefeng Ye, Tengfei Shen
{"title":"Existence and multiplicity of solutions for the Cauchy problem of a fractional Lorentz force equation","authors":"Xiaohui Shen, Tiefeng Ye, Tengfei Shen","doi":"10.1186/s13661-023-01793-4","DOIUrl":"https://doi.org/10.1186/s13661-023-01793-4","url":null,"abstract":"Abstract This paper aims to deal with the Cauchy problem of a fractional Lorentz force equation. By the methods of reducing and topological degree in cone, the existence and multiplicity of solutions to the problem were obtained, which extend and enrich some previous results.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135813277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical solution of Bratu’s boundary value problem based on Green’s function and a novel iterative scheme 基于格林函数和一种新的迭代格式的Bratu边值问题的数值解
4区 数学
Boundary Value Problems Pub Date : 2023-10-23 DOI: 10.1186/s13661-023-01791-6
Junaid Ahmad, Muhammad Arshad, Kifayat Ullah, Zhenhua Ma
{"title":"Numerical solution of Bratu’s boundary value problem based on Green’s function and a novel iterative scheme","authors":"Junaid Ahmad, Muhammad Arshad, Kifayat Ullah, Zhenhua Ma","doi":"10.1186/s13661-023-01791-6","DOIUrl":"https://doi.org/10.1186/s13661-023-01791-6","url":null,"abstract":"Abstract We compute the numerical solution of the Bratu’s boundary value problem (BVP) on a Banach space setting. To do this, we embed a Green’s function into a new two-step iteration scheme. After this, under some assumptions, we show that this new iterative scheme converges to a sought solution of the one-dimensional non-linear Bratu’s BVP. Furthermore, we show that the suggested new iterative scheme is essentially weak $w^{2}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>w</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> -stable in this setting. We perform some numerical computations and compare our findings with some other iterative schemes of the literature. Numerical results show that our new approach is numerically highly accurate and stable with respect to different set of parameters.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135411516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres 球面上Paneitz问题近似解的存在性与不存在性
4区 数学
Boundary Value Problems Pub Date : 2023-10-23 DOI: 10.1186/s13661-023-01789-0
Kamal Ould Bouh
{"title":"Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres","authors":"Kamal Ould Bouh","doi":"10.1186/s13661-023-01789-0","DOIUrl":"https://doi.org/10.1186/s13661-023-01789-0","url":null,"abstract":"Abstract This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents $(S_{pm varepsilon}): Delta ^{2}u-c_{n}Delta u+d_{n}u = Ku^{ frac{n+4}{n-4}pm varepsilon}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>±</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>Δ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>d</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>K</mml:mi> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:mfrac> <mml:mo>±</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msup> </mml:math> , $u&gt;0$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>u</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:math> on $S^{n}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:math> , where $ngeq 5$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:math> , ε is a small positive parameter and K is a smooth positive function on $S^{n}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:math> . We construct some solutions of $(S_{-varepsilon})$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:math> that blow up at one critical point of K . However, we prove also a nonexistence result of single-peaked solutions for the supercritical equation $(S_{+varepsilon})$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:math> .","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135411642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of rigid inclusions immersed in an isotropic elastic body from boundary measurement 用边界测量法测定各向同性弹性体中的刚性夹杂物
4区 数学
Boundary Value Problems Pub Date : 2023-10-12 DOI: 10.1186/s13661-023-01788-1
Mohamed Abdelwahed, Nejmeddine Chorfi, Maatoug Hassine
{"title":"Determination of rigid inclusions immersed in an isotropic elastic body from boundary measurement","authors":"Mohamed Abdelwahed, Nejmeddine Chorfi, Maatoug Hassine","doi":"10.1186/s13661-023-01788-1","DOIUrl":"https://doi.org/10.1186/s13661-023-01788-1","url":null,"abstract":"Abstract We study the determination of some rigid inclusions immersed in an isotropic elastic medium from overdetermined boundary data. We propose an accurate approach based on the topological sensitivity technique and the reciprocity gap concept. We derive a higher-order asymptotic formula, connecting the known boundary data and the unknown inclusion parameters. The obtained formula is interesting and useful tool for developing accurate and robust numerical algorithms in geometric inverse problems.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new weighted fractional operator with respect to another function via a new modified generalized Mittag–Leffler law 利用一个新的改进的广义Mittag-Leffler定律,得到一个关于另一个函数的新的加权分数算子
4区 数学
Boundary Value Problems Pub Date : 2023-10-06 DOI: 10.1186/s13661-023-01790-7
Sabri T. M. Thabet, Thabet Abdeljawad, Imed Kedim, M. Iadh Ayari
{"title":"A new weighted fractional operator with respect to another function via a new modified generalized Mittag–Leffler law","authors":"Sabri T. M. Thabet, Thabet Abdeljawad, Imed Kedim, M. Iadh Ayari","doi":"10.1186/s13661-023-01790-7","DOIUrl":"https://doi.org/10.1186/s13661-023-01790-7","url":null,"abstract":"Abstract In this paper, new generalized weighted fractional derivatives with respect to another function are derived in the sense of Caputo and Riemann–Liouville involving a new modified version of a generalized Mittag–Leffler function with three parameters, as well as their corresponding fractional integrals. In addition, several new and existing operators of nonsingular kernels are obtained as special cases of our operator. Many important properties related to our new operator are introduced, such as a series version involving Riemann–Liouville fractional integrals, weighted Laplace transforms with respect to another function, etc. Finally, an example is given to illustrate the effectiveness of the new results.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135350479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On nonlinear fractional Choquard equation with indefinite potential and general nonlinearity 具有不定势的非线性分数阶Choquard方程及一般非线性
4区 数学
Boundary Value Problems Pub Date : 2023-10-05 DOI: 10.1186/s13661-023-01786-3
Fangfang Liao, Fulai Chen, Shifeng Geng, Dong Liu
{"title":"On nonlinear fractional Choquard equation with indefinite potential and general nonlinearity","authors":"Fangfang Liao, Fulai Chen, Shifeng Geng, Dong Liu","doi":"10.1186/s13661-023-01786-3","DOIUrl":"https://doi.org/10.1186/s13661-023-01786-3","url":null,"abstract":"Abstract In this paper, we consider a class of fractional Choquard equations with indefinite potential $$ (-Delta )^{alpha}u+V(x)u= biggl[ int _{{mathbb{R}}^{N}} frac{M(epsilon y)G(u)}{ vert x-y vert ^{mu}},mathrm{d}y biggr]M( epsilon x)g(u), quad xin {mathbb{R}}^{N}, $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>−</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>α</mml:mi> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>V</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:msub> <mml:mo>∫</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>N</mml:mi> </mml:msup> </mml:msub> <mml:mfrac> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>(</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> <mml:mi>G</mml:mi> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mo>−</mml:mo> <mml:mi>y</mml:mi> <mml:msup> <mml:mo>|</mml:mo> <mml:mi>μ</mml:mi> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mspace /> <mml:mi>d</mml:mi> <mml:mi>y</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> <mml:mi>M</mml:mi> <mml:mo>(</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mi>g</mml:mi> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>N</mml:mi> </mml:msup> <mml:mo>,</mml:mo> </mml:math> where $alpha in (0,1)$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:math> , $N> 2alpha $ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> <mml:mo>></mml:mo> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> </mml:math> , $0<mu <2alpha $ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mn>0</mml:mn> <mml:mo><</mml:mo> <mml:mi>μ</mml:mi> <mml:mo><</mml:mo> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> </mml:math> , ϵ is a positive parameter. Here $(-Delta )^{alpha}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>−</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>α</mml:mi> </mml:msup> </mml:math> stands for the fractional Laplacian, V is a linear potential with periodicity condition, and M is a nonlinear reaction potential with a global condition. We establish the existence and concentration of ground state solutions under general nonlinearity by using variational methods.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135435849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing Dirichlet eigenvalues of the Schrödinger operator with a PT-symmetric optical potential 计算具有pt对称光势的Schrödinger算子的狄利克雷特征值
4区 数学
Boundary Value Problems Pub Date : 2023-10-04 DOI: 10.1186/s13661-023-01787-2
Cemile Nur
{"title":"Computing Dirichlet eigenvalues of the Schrödinger operator with a PT-symmetric optical potential","authors":"Cemile Nur","doi":"10.1186/s13661-023-01787-2","DOIUrl":"https://doi.org/10.1186/s13661-023-01787-2","url":null,"abstract":"Abstract We provide estimates for the eigenvalues of non-self-adjoint Sturm–Liouville operators with Dirichlet boundary conditions for a shift of the special potential $4cos ^{2}x+4iVsin 2x$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mn>4</mml:mn> <mml:msup> <mml:mo>cos</mml:mo> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mn>4</mml:mn> <mml:mi>i</mml:mi> <mml:mi>V</mml:mi> <mml:mo>sin</mml:mo> <mml:mn>2</mml:mn> <mml:mi>x</mml:mi> </mml:math> that is a PT-symmetric optical potential, especially when $|c|=|sqrt{1-4V^{2}}|<2$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>|</mml:mo> <mml:mi>c</mml:mi> <mml:mo>|</mml:mo> <mml:mo>=</mml:mo> <mml:mo>|</mml:mo> <mml:msqrt> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mn>4</mml:mn> <mml:msup> <mml:mi>V</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:msqrt> <mml:mo>|</mml:mo> <mml:mo><</mml:mo> <mml:mn>2</mml:mn> </mml:math> or correspondingly $0leq V<sqrt {5}/2$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mn>0</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>V</mml:mi> <mml:mo><</mml:mo> <mml:msqrt> <mml:mn>5</mml:mn> </mml:msqrt> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:math> . We obtain some useful equations for calculating Dirichlet eigenvalues also for $|c|geq 2$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>|</mml:mo> <mml:mi>c</mml:mi> <mml:mo>|</mml:mo> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:math> or equally $Vgeq sqrt{5}/2$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>V</mml:mi> <mml:mo>≥</mml:mo> <mml:msqrt> <mml:mn>5</mml:mn> </mml:msqrt> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:math> . We discuss our results by comparing them with the periodic and antiperiodic eigenvalues of the Schrödinger operator. We even approximate complex eigenvalues by the roots of some polynomials derived from some iteration formulas. Moreover, we give a numerical example with error analysis.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135591274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信