{"title":"一类各向异性抛物方程的基本解和爆破问题","authors":"Huashui Zhan","doi":"10.1186/s13661-023-01780-9","DOIUrl":null,"url":null,"abstract":"Abstract This paper is devoted to the study of anisotropic parabolic equation related to the $p_{i}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:math> -Laplacian with a source term $f(u)$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:math> . If $f(u)=0$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:math> , then the fundamental solution of the equation is constructed. If there are some restrictions on the growth order of u in the source term, the initial energy $E(0)$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>E</mml:mi> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:math> is positive and has a super boundedness, which depends on the Sobolev imbedding index, then the local solution may blow up in finite time.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":"54 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The fundamental solution and blow-up problem of an anisotropic parabolic equation\",\"authors\":\"Huashui Zhan\",\"doi\":\"10.1186/s13661-023-01780-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is devoted to the study of anisotropic parabolic equation related to the $p_{i}$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:math> -Laplacian with a source term $f(u)$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:math> . If $f(u)=0$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:math> , then the fundamental solution of the equation is constructed. If there are some restrictions on the growth order of u in the source term, the initial energy $E(0)$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>E</mml:mi> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:math> is positive and has a super boundedness, which depends on the Sobolev imbedding index, then the local solution may blow up in finite time.\",\"PeriodicalId\":55333,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-023-01780-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13661-023-01780-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文研究了源项为$f(u)$ f(u)的与$p_{i}$ pi -拉普拉斯方程有关的各向异性抛物方程。如果$f(u)=0,则构造方程的基本解。如果源项中u的生长阶数存在一定的限制,初始能量$E(0)$ E(0)为正且具有超有界性,且该超有界性依赖于Sobolev嵌入指标,则局部解可能在有限时间内爆炸。
The fundamental solution and blow-up problem of an anisotropic parabolic equation
Abstract This paper is devoted to the study of anisotropic parabolic equation related to the $p_{i}$ pi -Laplacian with a source term $f(u)$ f(u) . If $f(u)=0$ f(u)=0 , then the fundamental solution of the equation is constructed. If there are some restrictions on the growth order of u in the source term, the initial energy $E(0)$ E(0) is positive and has a super boundedness, which depends on the Sobolev imbedding index, then the local solution may blow up in finite time.
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.