Applying periodic and anti-periodic boundary conditions in existence results of fractional differential equations via nonlinear contractive mappings

IF 1 4区 数学 Q1 MATHEMATICS
Sumati Kumari Panda, Velusamy Vijayakumar, Kottakkaran Sooppy Nisar
{"title":"Applying periodic and anti-periodic boundary conditions in existence results of fractional differential equations via nonlinear contractive mappings","authors":"Sumati Kumari Panda, Velusamy Vijayakumar, Kottakkaran Sooppy Nisar","doi":"10.1186/s13661-023-01778-3","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a notion of nonlinear cyclic orbital $(\\xi -\\mathscr{F})$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>(</mml:mo> <mml:mi>ξ</mml:mi> <mml:mo>−</mml:mo> <mml:mi>F</mml:mi> <mml:mo>)</mml:mo> </mml:math> -contraction and prove related results. With these results, we address the existence and uniqueness results with periodic/anti-periodic boundary conditions for: 1. The nonlinear multi-order fractional differential equation $$ \\mathcal{L}(\\mathcal{D})\\theta (\\varsigma )=\\sigma \\bigl(\\varsigma , \\theta ( \\varsigma ) \\bigr), \\quad \\varsigma \\in \\mathscr{J}=[0,\\mathscr{A}], \\mathscr{A}>0, $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>L</mml:mi> <mml:mo>(</mml:mo> <mml:mi>D</mml:mi> <mml:mo>)</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>ς</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>σ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ς</mml:mi> <mml:mo>,</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>ς</mml:mi> <mml:mo>)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mi>ς</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>J</mml:mi> <mml:mo>=</mml:mo> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> <mml:mo>]</mml:mo> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:math> where $$\\begin{aligned} &amp;\\mathcal{L}(\\mathcal{D})=\\gamma _{w} \\,{}^{c} \\mathcal{D}^{\\delta _{w}}+ \\gamma _{w-1} \\,{}^{c} \\mathcal{D}^{\\delta _{w-1}}+\\cdots+\\gamma _{1} \\,{}^{c} \\mathcal{D}^{\\delta _{1}}+\\gamma _{0} \\,{}^{c} \\mathcal{D}^{\\delta _{0}},\\\\ &amp;\\gamma _{\\flat}\\in \\mathbb{R}\\quad (\\flat =0,1,2,3,\\ldots,w), \\qquad \\gamma _{w} \\neq 0, \\\\ &amp;0\\leq \\delta _{0}< \\delta _{1}< \\delta _{2}< \\cdots< \\delta _{w-1}< \\delta _{w}< 1; \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mtable> <mml:mtr> <mml:mtd /> <mml:mtd> <mml:mi>L</mml:mi> <mml:mo>(</mml:mo> <mml:mi>D</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>w</mml:mi> </mml:msub> <mml:mspace /> <mml:msup> <mml:mrow /> <mml:mi>c</mml:mi> </mml:msup> <mml:msup> <mml:mi>D</mml:mi> <mml:msub> <mml:mi>δ</mml:mi> <mml:mi>w</mml:mi> </mml:msub> </mml:msup> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mrow> <mml:mi>w</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mspace /> <mml:msup> <mml:mrow /> <mml:mi>c</mml:mi> </mml:msup> <mml:msup> <mml:mi>D</mml:mi> <mml:msub> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mi>w</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:msup> <mml:mo>+</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mspace /> <mml:msup> <mml:mrow /> <mml:mi>c</mml:mi> </mml:msup> <mml:msup> <mml:mi>D</mml:mi> <mml:msub> <mml:mi>δ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:msup> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mspace /> <mml:msup> <mml:mrow /> <mml:mi>c</mml:mi> </mml:msup> <mml:msup> <mml:mi>D</mml:mi> <mml:msub> <mml:mi>δ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:msup> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd /> <mml:mtd> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>♭</mml:mi> </mml:msub> <mml:mo>∈</mml:mo> <mml:mi>R</mml:mi> <mml:mspace /> <mml:mo>(</mml:mo> <mml:mi>♭</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>w</mml:mi> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> <mml:mspace /> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>w</mml:mi> </mml:msub> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd /> <mml:mtd> <mml:mn>0</mml:mn> <mml:mo>≤</mml:mo> <mml:msub> <mml:mi>δ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo><</mml:mo> <mml:msub> <mml:mi>δ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo><</mml:mo> <mml:msub> <mml:mi>δ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo><</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo><</mml:mo> <mml:msub> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mi>w</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo><</mml:mo> <mml:msub> <mml:mi>δ</mml:mi> <mml:mi>w</mml:mi> </mml:msub> <mml:mo><</mml:mo> <mml:mn>1</mml:mn> <mml:mo>;</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> </mml:math> 2. The nonlinear multi-term fractional delay differential equation $$\\begin{aligned} &amp;\\mathcal{L}(\\mathcal{D})\\theta (\\varsigma ) =\\sigma \\bigl(\\varsigma , \\theta ( \\varsigma ),\\theta (\\varsigma -\\tau ) \\bigr), \\quad \\varsigma \\in \\mathscr{J}=[0, \\mathscr{A}], \\mathscr{A}>0; \\\\ &amp;\\theta (\\varsigma ) =\\bar{\\sigma}(\\varsigma ),\\quad \\varsigma \\in [-\\tau ,0], \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mtable> <mml:mtr> <mml:mtd /> <mml:mtd> <mml:mi>L</mml:mi> <mml:mo>(</mml:mo> <mml:mi>D</mml:mi> <mml:mo>)</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>ς</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>σ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ς</mml:mi> <mml:mo>,</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>ς</mml:mi> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>ς</mml:mi> <mml:mo>−</mml:mo> <mml:mi>τ</mml:mi> <mml:mo>)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mi>ς</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>J</mml:mi> <mml:mo>=</mml:mo> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> <mml:mo>]</mml:mo> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> <mml:mo>;</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd /> <mml:mtd> <mml:mi>θ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>ς</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mover> <mml:mi>σ</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> <mml:mo>(</mml:mo> <mml:mi>ς</mml:mi> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mi>ς</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>[</mml:mo> <mml:mo>−</mml:mo> <mml:mi>τ</mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>]</mml:mo> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> </mml:math> where $$\\begin{aligned} &amp;\\mathcal{L}(\\mathcal{D})=\\gamma _{w} \\,{}^{c} \\mathcal{D}^{\\delta _{w}}+ \\gamma _{w-1} \\,{}^{c} \\mathcal{D}^{\\delta _{w-1}}+\\cdots+\\gamma _{1} \\,{}^{c} \\mathcal{D}^{\\delta _{1}}+\\gamma _{0} \\,{}^{c} \\mathcal{D}^{\\delta _{0}},\\\\ &amp;\\gamma _{\\flat}\\in \\mathbb{R}\\quad (\\flat =0,1,2,3,\\ldots,w), \\qquad \\gamma _{w} \\neq 0, \\\\ &amp;0\\leq \\delta _{0}< \\delta _{1}< \\delta _{2}< \\cdots< \\delta _{w-1}< \\delta _{w}< 1; \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mtable> <mml:mtr> <mml:mtd /> <mml:mtd> <mml:mi>L</mml:mi> <mml:mo>(</mml:mo> <mml:mi>D</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>w</mml:mi> </mml:msub> <mml:mspace /> <mml:msup> <mml:mrow /> <mml:mi>c</mml:mi> </mml:msup> <mml:msup> <mml:mi>D</mml:mi> <mml:msub> <mml:mi>δ</mml:mi> <mml:mi>w</mml:mi> </mml:msub> </mml:msup> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mrow> <mml:mi>w</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mspace /> <mml:msup> <mml:mrow /> <mml:mi>c</mml:mi> </mml:msup> <mml:msup> <mml:mi>D</mml:mi> <mml:msub> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mi>w</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:msup> <mml:mo>+</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mspace /> <mml:msup> <mml:mrow /> <mml:mi>c</mml:mi> </mml:msup> <mml:msup> <mml:mi>D</mml:mi> <mml:msub> <mml:mi>δ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:msup> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mspace /> <mml:msup> <mml:mrow /> <mml:mi>c</mml:mi> </mml:msup> <mml:msup> <mml:mi>D</mml:mi> <mml:msub> <mml:mi>δ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:msup> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd /> <mml:mtd> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>♭</mml:mi> </mml:msub> <mml:mo>∈</mml:mo> <mml:mi>R</mml:mi> <mml:mspace /> <mml:mo>(</mml:mo> <mml:mi>♭</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>w</mml:mi> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> <mml:mspace /> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>w</mml:mi> </mml:msub> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd /> <mml:mtd> <mml:mn>0</mml:mn> <mml:mo>≤</mml:mo> <mml:msub> <mml:mi>δ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo><</mml:mo> <mml:msub> <mml:mi>δ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo><</mml:mo> <mml:msub> <mml:mi>δ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo><</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo><</mml:mo> <mml:msub> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mi>w</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo><</mml:mo> <mml:msub> <mml:mi>δ</mml:mi> <mml:mi>w</mml:mi> </mml:msub> <mml:mo><</mml:mo> <mml:mn>1</mml:mn> <mml:mo>;</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> </mml:math> moreover, here ${}^{c}\\mathcal{D}^{\\delta}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mmultiscripts> <mml:mi>D</mml:mi> <mml:none /> <mml:mi>δ</mml:mi> <mml:mprescripts /> <mml:none /> <mml:mi>c</mml:mi> </mml:mmultiscripts> </mml:math> is predominantly called Caputo fractional derivative of order δ .","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":"22 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13661-023-01778-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We introduce a notion of nonlinear cyclic orbital $(\xi -\mathscr{F})$ ( ξ F ) -contraction and prove related results. With these results, we address the existence and uniqueness results with periodic/anti-periodic boundary conditions for: 1. The nonlinear multi-order fractional differential equation $$ \mathcal{L}(\mathcal{D})\theta (\varsigma )=\sigma \bigl(\varsigma , \theta ( \varsigma ) \bigr), \quad \varsigma \in \mathscr{J}=[0,\mathscr{A}], \mathscr{A}>0, $$ L ( D ) θ ( ς ) = σ ( ς , θ ( ς ) ) , ς J = [ 0 , A ] , A > 0 , where $$\begin{aligned} &\mathcal{L}(\mathcal{D})=\gamma _{w} \,{}^{c} \mathcal{D}^{\delta _{w}}+ \gamma _{w-1} \,{}^{c} \mathcal{D}^{\delta _{w-1}}+\cdots+\gamma _{1} \,{}^{c} \mathcal{D}^{\delta _{1}}+\gamma _{0} \,{}^{c} \mathcal{D}^{\delta _{0}},\\ &\gamma _{\flat}\in \mathbb{R}\quad (\flat =0,1,2,3,\ldots,w), \qquad \gamma _{w} \neq 0, \\ &0\leq \delta _{0}< \delta _{1}< \delta _{2}< \cdots< \delta _{w-1}< \delta _{w}< 1; \end{aligned}$$ L ( D ) = γ w c D δ w + γ w 1 c D δ w 1 + + γ 1 c D δ 1 + γ 0 c D δ 0 , γ R ( = 0 , 1 , 2 , 3 , , w ) , γ w 0 , 0 δ 0 < δ 1 < δ 2 < < δ w 1 < δ w < 1 ; 2. The nonlinear multi-term fractional delay differential equation $$\begin{aligned} &\mathcal{L}(\mathcal{D})\theta (\varsigma ) =\sigma \bigl(\varsigma , \theta ( \varsigma ),\theta (\varsigma -\tau ) \bigr), \quad \varsigma \in \mathscr{J}=[0, \mathscr{A}], \mathscr{A}>0; \\ &\theta (\varsigma ) =\bar{\sigma}(\varsigma ),\quad \varsigma \in [-\tau ,0], \end{aligned}$$ L ( D ) θ ( ς ) = σ ( ς , θ ( ς ) , θ ( ς τ ) ) , ς J = [ 0 , A ] , A > 0 ; θ ( ς ) = σ ¯ ( ς ) , ς [ τ , 0 ] , where $$\begin{aligned} &\mathcal{L}(\mathcal{D})=\gamma _{w} \,{}^{c} \mathcal{D}^{\delta _{w}}+ \gamma _{w-1} \,{}^{c} \mathcal{D}^{\delta _{w-1}}+\cdots+\gamma _{1} \,{}^{c} \mathcal{D}^{\delta _{1}}+\gamma _{0} \,{}^{c} \mathcal{D}^{\delta _{0}},\\ &\gamma _{\flat}\in \mathbb{R}\quad (\flat =0,1,2,3,\ldots,w), \qquad \gamma _{w} \neq 0, \\ &0\leq \delta _{0}< \delta _{1}< \delta _{2}< \cdots< \delta _{w-1}< \delta _{w}< 1; \end{aligned}$$ L ( D ) = γ w c D δ w + γ w 1 c D δ w 1 + + γ 1 c D δ 1 + γ 0 c D δ 0 , γ R ( = 0 , 1 , 2 , 3 , , w ) , γ w 0 , 0 δ 0 < δ 1 < δ 2 < < δ w 1 < δ w < 1 ; moreover, here ${}^{c}\mathcal{D}^{\delta}$ D δ c is predominantly called Caputo fractional derivative of order δ .
利用非线性压缩映射在分数阶微分方程存在性结果中应用周期和反周期边界条件
摘要引入了非线性循环轨道$(\xi -\mathscr{F})$ (ξ−F) -收缩的概念,并证明了相关结果。利用这些结果,我们讨论了周期/反周期边界条件下的存在唯一性结果:非线性多阶分数阶微分方程$$ \mathcal{L}(\mathcal{D})\theta (\varsigma )=\sigma \bigl(\varsigma , \theta ( \varsigma ) \bigr), \quad \varsigma \in \mathscr{J}=[0,\mathscr{A}], \mathscr{A}>0, $$ L (D) θ (ς) = σ (ς, θ (ς)), ς∈J = [0, A], A &gt;0,其中$$\begin{aligned} &\mathcal{L}(\mathcal{D})=\gamma _{w} \,{}^{c} \mathcal{D}^{\delta _{w}}+ \gamma _{w-1} \,{}^{c} \mathcal{D}^{\delta _{w-1}}+\cdots+\gamma _{1} \,{}^{c} \mathcal{D}^{\delta _{1}}+\gamma _{0} \,{}^{c} \mathcal{D}^{\delta _{0}},\\ &\gamma _{\flat}\in \mathbb{R}\quad (\flat =0,1,2,3,\ldots,w), \qquad \gamma _{w} \neq 0, \\ &0\leq \delta _{0}< \delta _{1}< \delta _{2}< \cdots< \delta _{w-1}< \delta _{w}< 1; \end{aligned}$$ L (D) = γ w c D δ w + γ w−1 c D δ w−1 +⋯⋯+ γ 1 c D δ 1 + γ 0 c D δ 0, γ∈R(≈0,1,2,3,…,w), γ w≠0,0≤δ 0 &lt;δ 1 &lt;δ 2 &lt;⋯&lt;δ w−1 &lt;δ w &lt;1;2. 非线性多项分数阶时滞微分方程$$\begin{aligned} &\mathcal{L}(\mathcal{D})\theta (\varsigma ) =\sigma \bigl(\varsigma , \theta ( \varsigma ),\theta (\varsigma -\tau ) \bigr), \quad \varsigma \in \mathscr{J}=[0, \mathscr{A}], \mathscr{A}>0; \\ &\theta (\varsigma ) =\bar{\sigma}(\varsigma ),\quad \varsigma \in [-\tau ,0], \end{aligned}$$ L (D) θ (ς) = σ (ς, θ (ς), θ (ς−τ)), ς∈J = [0, A], A &gt;0;θ (ς) = σ¯(ς), ς∈[- τ, 0],其中$$\begin{aligned} &\mathcal{L}(\mathcal{D})=\gamma _{w} \,{}^{c} \mathcal{D}^{\delta _{w}}+ \gamma _{w-1} \,{}^{c} \mathcal{D}^{\delta _{w-1}}+\cdots+\gamma _{1} \,{}^{c} \mathcal{D}^{\delta _{1}}+\gamma _{0} \,{}^{c} \mathcal{D}^{\delta _{0}},\\ &\gamma _{\flat}\in \mathbb{R}\quad (\flat =0,1,2,3,\ldots,w), \qquad \gamma _{w} \neq 0, \\ &0\leq \delta _{0}< \delta _{1}< \delta _{2}< \cdots< \delta _{w-1}< \delta _{w}< 1; \end{aligned}$$ L (D) = γ w c D δ w + γ w - 1 c D δ w - 1 +⋯⋯+ γ 1 c D δ 1 + γ 0 c D δ 0, γ∈R(≈0,1,2,3,…,w), γ w≠0,0≤δ 0 &lt;δ 1 &lt;δ 2 &lt;⋯&lt;δ w−1 &lt;δ w &lt;1;此外,${}^{c}\mathcal{D}^{\delta}$ D δ c主要被称为δ阶卡普托分数导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Boundary Value Problems
Boundary Value Problems 数学-数学
自引率
5.90%
发文量
83
审稿时长
3 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信