Initial boundary value problem for a viscoelastic wave equation with Balakrishnan–Taylor damping and a delay term: decay estimates and blow-up result

IF 1 4区 数学 Q1 MATHEMATICS
Billel Gheraibia, Nouri Boumaza
{"title":"Initial boundary value problem for a viscoelastic wave equation with Balakrishnan–Taylor damping and a delay term: decay estimates and blow-up result","authors":"Billel Gheraibia, Nouri Boumaza","doi":"10.1186/s13661-023-01781-8","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the initial boundary value problem for the following viscoelastic wave equation with Balakrishnan–Taylor damping and a delay term where the relaxation function satisfies $g'(t)\\leq -\\xi (t)g^{r}(t)$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>g</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> <mml:mo>≤</mml:mo> <mml:mo>−</mml:mo> <mml:mi>ξ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> <mml:msup> <mml:mi>g</mml:mi> <mml:mi>r</mml:mi> </mml:msup> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:math> , $t\\geq 0$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>t</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:math> , $1\\leq r< \\frac{3}{2}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>r</mml:mi> <mml:mo><</mml:mo> <mml:mfrac> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> <mml:mn>2</mml:mn> </mml:mfrac> </mml:math> . The main goal of this work is to study the global existence, general decay, and blow-up result. The global existence has been obtained by potential-well theory, the decay of solutions of energy has been established by introducing suitable energy and Lyapunov functionals, and a blow-up result has been obtained with negative initial energy.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":"39 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13661-023-01781-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we study the initial boundary value problem for the following viscoelastic wave equation with Balakrishnan–Taylor damping and a delay term where the relaxation function satisfies $g'(t)\leq -\xi (t)g^{r}(t)$ g ( t ) ξ ( t ) g r ( t ) , $t\geq 0$ t 0 , $1\leq r< \frac{3}{2}$ 1 r < 3 2 . The main goal of this work is to study the global existence, general decay, and blow-up result. The global existence has been obtained by potential-well theory, the decay of solutions of energy has been established by introducing suitable energy and Lyapunov functionals, and a blow-up result has been obtained with negative initial energy.
具有Balakrishnan-Taylor阻尼和时滞项的粘弹性波动方程的初边值问题:衰减估计和爆破结果
摘要本文研究了具有Balakrishnan-Taylor阻尼且松弛函数满足$g'(t)\leq -\xi (t)g^{r}(t)$ g ' (t)≤- ξ (t) g r (t), $t\geq 0$ t≥0,$1\leq r< \frac{3}{2}$ 1≤r &lt的时滞项的粘弹性波动方程的初边值问题;3 .答案:b。本工作的主要目的是研究整体存在性、一般衰变和爆炸结果。通过引入合适的能量和李雅普诺夫泛函,建立了能量解的衰减性,并得到了初始能量为负的爆破结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Boundary Value Problems
Boundary Value Problems 数学-数学
自引率
5.90%
发文量
83
审稿时长
3 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信