The fundamental solution and blow-up problem of an anisotropic parabolic equation

IF 1 4区 数学 Q1 MATHEMATICS
Huashui Zhan
{"title":"The fundamental solution and blow-up problem of an anisotropic parabolic equation","authors":"Huashui Zhan","doi":"10.1186/s13661-023-01780-9","DOIUrl":null,"url":null,"abstract":"Abstract This paper is devoted to the study of anisotropic parabolic equation related to the $p_{i}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:math> -Laplacian with a source term $f(u)$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:math> . If $f(u)=0$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:math> , then the fundamental solution of the equation is constructed. If there are some restrictions on the growth order of u in the source term, the initial energy $E(0)$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>E</mml:mi> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:math> is positive and has a super boundedness, which depends on the Sobolev imbedding index, then the local solution may blow up in finite time.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":"54 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13661-023-01780-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper is devoted to the study of anisotropic parabolic equation related to the $p_{i}$ p i -Laplacian with a source term $f(u)$ f ( u ) . If $f(u)=0$ f ( u ) = 0 , then the fundamental solution of the equation is constructed. If there are some restrictions on the growth order of u in the source term, the initial energy $E(0)$ E ( 0 ) is positive and has a super boundedness, which depends on the Sobolev imbedding index, then the local solution may blow up in finite time.
一类各向异性抛物方程的基本解和爆破问题
摘要本文研究了源项为$f(u)$ f(u)的与$p_{i}$ pi -拉普拉斯方程有关的各向异性抛物方程。如果$f(u)=0,则构造方程的基本解。如果源项中u的生长阶数存在一定的限制,初始能量$E(0)$ E(0)为正且具有超有界性,且该超有界性依赖于Sobolev嵌入指标,则局部解可能在有限时间内爆炸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Boundary Value Problems
Boundary Value Problems 数学-数学
自引率
5.90%
发文量
83
审稿时长
3 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信