Computer Aided Geometric Design最新文献

筛选
英文 中文
Resultants of slice regular polynomials in two quaternionic variables 两个四元变量中切片正则多项式的结果项
IF 1.3 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-08-21 DOI: 10.1016/j.cagd.2024.102381
Anna Gori , Giulia Sarfatti , Fabio Vlacci
{"title":"Resultants of slice regular polynomials in two quaternionic variables","authors":"Anna Gori ,&nbsp;Giulia Sarfatti ,&nbsp;Fabio Vlacci","doi":"10.1016/j.cagd.2024.102381","DOIUrl":"10.1016/j.cagd.2024.102381","url":null,"abstract":"<div><p>We introduce a non-commutative resultant, for slice regular polynomials in two quaternionic variables, defined in terms of a suitable Dieudonné determinant. We use this tool to investigate the existence of common zeros and common factors of slice regular polynomials and we give a kinematic interpretation of our results.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"114 ","pages":"Article 102381"},"PeriodicalIF":1.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conversion from NURBS to Bézier representation 从 NURBS 转换为贝塞尔表示法
IF 1.3 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-08-10 DOI: 10.1016/j.cagd.2024.102380
Lanlan Yan
{"title":"Conversion from NURBS to Bézier representation","authors":"Lanlan Yan","doi":"10.1016/j.cagd.2024.102380","DOIUrl":"10.1016/j.cagd.2024.102380","url":null,"abstract":"<div><p>With the help of the Cox-de Boor recursion formula and the recurrence relation of the Bernstein polynomials, two categories of recursive algorithms for calculating the conversion matrix from an arbitrary non-uniform B-spline basis to a Bernstein polynomial basis of the same degree are presented. One is to calculate the elements of the matrix one by one, and the other is to calculate the elements of the matrix in two blocks. Interestingly, the weights in the two most basic recursion formulas are directly related to the weights in the recursion definition of the B-spline basis functions. The conversion matrix is exactly the Bézier extraction operator in isogeometric analysis, and we obtain the local extraction operator directly. With the aid of the conversion matrix, it is very convenient to determine the Bézier representation of NURBS curves and surfaces on any specified domain, that is, the isogeometric Bézier elements of these curves and surfaces.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102380"},"PeriodicalIF":1.3,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1D CNNs and face-based random walks: A powerful combination to enhance mesh understanding and 3D semantic segmentation 一维 CNN 和基于人脸的随机行走:增强网格理解和三维语义分割的强大组合
IF 1.3 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-08-05 DOI: 10.1016/j.cagd.2024.102379
Amine Kassimi , Jamal Riffi , Khalid El Fazazy , Thierry Bertin Gardelle , Hamza Mouncif , Mohamed Adnane Mahraz , Ali Yahyaouy , Hamid Tairi
{"title":"1D CNNs and face-based random walks: A powerful combination to enhance mesh understanding and 3D semantic segmentation","authors":"Amine Kassimi ,&nbsp;Jamal Riffi ,&nbsp;Khalid El Fazazy ,&nbsp;Thierry Bertin Gardelle ,&nbsp;Hamza Mouncif ,&nbsp;Mohamed Adnane Mahraz ,&nbsp;Ali Yahyaouy ,&nbsp;Hamid Tairi","doi":"10.1016/j.cagd.2024.102379","DOIUrl":"10.1016/j.cagd.2024.102379","url":null,"abstract":"<div><p>In this paper, we present a novel face-based random walk method aimed at addressing the 3D semantic segmentation issue. Our method utilizes a one-dimensional convolutional neural network for detailed feature extraction from sequences of triangular faces and employs a stacked gated recurrent unit to gather information along the sequence during training. This approach allows us to effectively handle irregular meshes and utilize the inherent feature extraction potential present in mesh geometry. Our study's results show that the proposed method achieves competitive results compared to the state-of-the-art methods in mesh segmentation. Importantly, it requires fewer training iterations and demonstrates versatility by applying to a wide range of objects without the need for the mesh to adhere to manifold or watertight topology requirements.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102379"},"PeriodicalIF":1.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De Casteljau's geometric approach to geometric design still alive 德卡斯特约的几何设计方法仍有生命力
IF 1.3 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-08-02 DOI: 10.1016/j.cagd.2024.102378
Rachid Ait-Haddou , Marie-Laurence Mazure
{"title":"De Casteljau's geometric approach to geometric design still alive","authors":"Rachid Ait-Haddou ,&nbsp;Marie-Laurence Mazure","doi":"10.1016/j.cagd.2024.102378","DOIUrl":"10.1016/j.cagd.2024.102378","url":null,"abstract":"<div><p>With great enthusiasm and admiration we would like to pay tribute to Paul de Faget de Casteljau for his essential contribution to CAGD. Motivated by the development of automated <em>human-computer collaboration</em> for car industry, not only was he the very first pioneer in this field, but his initial geometric approach to creating <em>shapes from poles</em> was even undeniably the simplest and most remarkably effective. Two crucial points in this approach are to keep in mind: firstly, the idea of splitting one variable into several variables to facilitate the algorithmic construction of curves; secondly, the possibility of controlling shapes by means of osculating flats and corner-cutting algorithms. The present article is a partial survey on Chebyshevian blossoms intended to show that his ideas are still alive.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102378"},"PeriodicalIF":1.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetry group detection of point clouds in 3D via a decomposition method 通过分解法检测三维点云的对称群
IF 1.3 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-07-24 DOI: 10.1016/j.cagd.2024.102376
Michal Bizzarri , Lukáš Hruda , Miroslav Lávička , Jan Vršek
{"title":"Symmetry group detection of point clouds in 3D via a decomposition method","authors":"Michal Bizzarri ,&nbsp;Lukáš Hruda ,&nbsp;Miroslav Lávička ,&nbsp;Jan Vršek","doi":"10.1016/j.cagd.2024.102376","DOIUrl":"10.1016/j.cagd.2024.102376","url":null,"abstract":"<div><p>Analyzing the symmetries present in point clouds, which represent sets of 3D coordinates, is important for understanding their underlying structure and facilitating various applications. In this paper, we propose a novel decomposition-based method for detecting the entire symmetry group of 3D point clouds. Our approach decomposes the point cloud into simpler shapes whose symmetry groups are easier to find. The exact symmetry group of the original point cloud is then derived from the symmetries of these individual components. The method presented in this paper is a direct extension of the approach recently formulated in <span><span>Bizzarri et al. (2022a)</span></span> for discrete curves in plane. The method can be easily modified also for perturbed data. This work contributes to the advancement of symmetry analysis in point clouds, providing a foundation for further research and enhancing applications in computer vision, robotics, and augmented reality.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102376"},"PeriodicalIF":1.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quaternionic Bézier parameterizations of bidegree (2,1) 双阶 (2,1) 的四元数贝齐参数化
IF 1.3 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-07-19 DOI: 10.1016/j.cagd.2024.102375
R. Krasauskas, S. Zube
{"title":"Quaternionic Bézier parameterizations of bidegree (2,1)","authors":"R. Krasauskas,&nbsp;S. Zube","doi":"10.1016/j.cagd.2024.102375","DOIUrl":"10.1016/j.cagd.2024.102375","url":null,"abstract":"<div><p>Earlier results on various quaternionic Bézier parametrizations of Darboux cyclides are extended to bidegree <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> parameterizations of a wider class of surfaces containing at least two families of circles. The focus is on one special family of such parametrizations, which depends on 4 control points and defines a pencil of surfaces tangent along the common circle. This construction is used for parametrizing two-oval Darboux cyclides and generating the Gaussian map for rational offsets of ellipsoids and two-sheet hyperboloids.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102375"},"PeriodicalIF":1.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extending the Hough transform to recognize and approximate space curves in 3D models 扩展 Hough 变换,识别并近似三维模型中的空间曲线
IF 1.3 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-07-18 DOI: 10.1016/j.cagd.2024.102377
Chiara Romanengo, Bianca Falcidieno, Silvia Biasotti
{"title":"Extending the Hough transform to recognize and approximate space curves in 3D models","authors":"Chiara Romanengo,&nbsp;Bianca Falcidieno,&nbsp;Silvia Biasotti","doi":"10.1016/j.cagd.2024.102377","DOIUrl":"10.1016/j.cagd.2024.102377","url":null,"abstract":"<div><p>Feature curves are space curves identified by color or curvature variations in a shape, which are crucial for human perception (<span><span>Biederman, 1995</span></span>). Detecting these characteristic lines in 3D digital models becomes important for recognition and representation processes. For recognizing plane curves in images, the Hough transform (HT) provided a very good solution to the problem. It selects the best-fitting curve in a dictionary of families of curves through a voting procedure that makes it robust to noise and missing parts. Since 3D digital models are often obtained by scanning real objects and may have many defects, the HT has been extended to recognize and approximate space curves in 3D models that correspond to relevant features</p><p>This work overviews three HT-based different approaches for identifying and approximating spatial profiles of points extracted from point clouds or meshes. A first attempt at this extension involved projecting the spatial points onto the regression plane, thus reducing the problem to planar recognition and using families of plane curves. A second approach has been proposed to recognize spatial profiles that cannot be projected onto the regression plane, using two types of space curve families. Unfortunately, the main drawback of methods based on traditional HT is that it requires prior knowledge of which family of curves to look for.</p><p>To overcome this limitation, a third method has been developed that provides a piecewise space curve approximation using specific parametric polynomial curves. Additionally, free-form curves that a parametric or implicit form cannot express can be represented using this technique.</p><p>In the paper, we also analyze the pros and cons of the various approaches and how they managed and reduced the HT's computational cost, given the large number of parameters introduced when families of space curves are considered.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102377"},"PeriodicalIF":1.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167839624001110/pdfft?md5=6bb00fd796f369e5995f8832f3474cc5&pid=1-s2.0-S0167839624001110-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On G2 approximation of planar algebraic curves under certified error control by quintic Pythagorean-hodograph splines 论五次毕达哥拉斯-正交样条曲线认证误差控制下的平面代数曲线 G2 近似
IF 1.3 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-07-11 DOI: 10.1016/j.cagd.2024.102374
Xin-Yu Wang , Li-Yong Shen , Chun-Ming Yuan , Sonia Pérez-Díaz
{"title":"On G2 approximation of planar algebraic curves under certified error control by quintic Pythagorean-hodograph splines","authors":"Xin-Yu Wang ,&nbsp;Li-Yong Shen ,&nbsp;Chun-Ming Yuan ,&nbsp;Sonia Pérez-Díaz","doi":"10.1016/j.cagd.2024.102374","DOIUrl":"10.1016/j.cagd.2024.102374","url":null,"abstract":"<div><p>The Pythagorean-Hodograph curve (PH curve) is a valuable curve type extensively utilized in computer-aided geometric design and manufacturing. This paper presents an approach to approximate a planar algebraic curve within a bounding box by employing piecewise quintic PH spline curves, while maintaining <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> smoothness of the approximating curve and preserving second-order geometric details at singularities. The bounding box encompasses all <em>x</em>-coordinates of key topological points, ensuring accurate representation. The paper explores the analysis of the <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> interpolation problem for quintic PH curves with invariant convexity, transforming the quest for interpolation solutions into identifying positive roots within a set of algebraic equations. Through infinitesimal order analysis, it is established that a solution necessarily exists following adequate subdivision, laying the groundwork for practical application. Finally, the paper introduces a novel algorithm that integrates prior research to construct the approximating curve while maintaining control over the desired error levels.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102374"},"PeriodicalIF":1.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calibrating figures 校准数字
IF 1.3 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-07-01 DOI: 10.1016/j.cagd.2024.102365
Niels Lubbes , Josef Schicho
{"title":"Calibrating figures","authors":"Niels Lubbes ,&nbsp;Josef Schicho","doi":"10.1016/j.cagd.2024.102365","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102365","url":null,"abstract":"<div><p>It is known that a camera can be calibrated using three pictures of either squares, or spheres, or surfaces of revolution. We give a new method to calibrate a camera with the picture of a single torus.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"112 ","pages":"Article 102365"},"PeriodicalIF":1.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape reconstruction of trapezoidal surfaces from unorganized point clouds 从无组织点云重建梯形曲面的形状
IF 1.3 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-06-28 DOI: 10.1016/j.cagd.2024.102367
Arvin Rasoulzadeh, Martin Kilian, Georg Nawratil
{"title":"Shape reconstruction of trapezoidal surfaces from unorganized point clouds","authors":"Arvin Rasoulzadeh,&nbsp;Martin Kilian,&nbsp;Georg Nawratil","doi":"10.1016/j.cagd.2024.102367","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102367","url":null,"abstract":"<div><p>A smooth T-surface can be thought of as a generalization of a surface of revolution in such a way that the axis of rotation is not fixed at one point but rather traces a smooth path on the base plane. Furthermore, the action, by which the aforementioned surface is obtained does not need to be merely rotation but any “suitable” planar equiform transformation applied to the points of a certain smooth profile curve. In analogy to the smooth setting, if the axis footpoints sweep a polyline on the base plane and if the profile curve is discretely chosen then a T-hedra (discrete T-surface) with trapezoidal faces is obtained.</p><p>The goal of this article is to reconstruct a T-hedron from an already given unorganized point cloud of a T-surface. In doing so, a kinematic approach is taken into account, where the algorithm at first tries to find the aforementioned axis direction associated with the point cloud. Then the algorithm finds a polygonal path through which the axis footpoint moves. Finally, by properly cutting the point cloud with the planes passing through the axis and its footpoints, it reconstructs the surface. The presented method is demonstrated using examples.</p><p>From an applied point of view, the straightforwardness of the generation of these surfaces predestines them for building and design processes. In fact, one can find many built objects belonging to the sub-classes of T-surfaces such as <em>surfaces of revolution</em> and <em>moulding surfaces</em>. Furthermore, the planarity of the faces of the discrete version paves the way for steel/glass construction in industry. Finally, these surfaces are also suitable for transformable designs as they allow an isometric deformation within their class.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102367"},"PeriodicalIF":1.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167839624001018/pdfft?md5=a89afc76375e1a62b939020faa4c744d&pid=1-s2.0-S0167839624001018-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141542428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信