Computer Aided Geometric Design最新文献

筛选
英文 中文
Point-StyleGAN: Multi-scale point cloud synthesis with style modulation 点-风格-广域网:带风格调制的多尺度点云合成
IF 1.5 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-04-24 DOI: 10.1016/j.cagd.2024.102309
Yang Zhou , Cheng Xu , Zhiqiang Lin , Xinwei He , Hui Huang
{"title":"Point-StyleGAN: Multi-scale point cloud synthesis with style modulation","authors":"Yang Zhou ,&nbsp;Cheng Xu ,&nbsp;Zhiqiang Lin ,&nbsp;Xinwei He ,&nbsp;Hui Huang","doi":"10.1016/j.cagd.2024.102309","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102309","url":null,"abstract":"<div><p>A point cloud is a set of discrete surface samples. As the simplest 3D representation, it is widely used in 3D reconstruction and perception. Yet developing a generative model for point clouds remains challenging due to the sparsity and irregularity of points. Drawn by StyleGAN, the forefront image generation model, this paper presents Point-StyleGAN, a generator adapted from StyleGAN2 architecture for point cloud synthesis. Specifically, we replace all the 2D convolutions with 1D ones and introduce a series of multi-resolution discriminators to overcome the under-constrained issue caused by the sparsity of points. We further add a metric learning-based loss to improve generation diversity. Besides the generation task, we show several applications based on GAN inversion, among which an inversion encoder Point-pSp is designed and applied to point cloud reconstruction, completion, and interpolation. To our best knowledge, Point-pSp is the first inversion encoder for point cloud embedding in the latent space of GANs. The comparisons to prior work and the applications of GAN inversion demonstrate the advantages of our method. We believe the potential brought by the Point-StyleGAN architecture would further inspire massive follow-up works.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102309"},"PeriodicalIF":1.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated placement of dental attachments based on orthodontic pathways 根据正畸路径自动安置牙科附件
IF 1.5 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-04-24 DOI: 10.1016/j.cagd.2024.102320
Yiheng Lv , Guangshun Wei , Yeying Fan , Long Ma , Dongxu Liu , Yuanfeng Zhou
{"title":"Automated placement of dental attachments based on orthodontic pathways","authors":"Yiheng Lv ,&nbsp;Guangshun Wei ,&nbsp;Yeying Fan ,&nbsp;Long Ma ,&nbsp;Dongxu Liu ,&nbsp;Yuanfeng Zhou","doi":"10.1016/j.cagd.2024.102320","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102320","url":null,"abstract":"<div><p>The aesthetic appeal and removability of clear aligners have led to their widespread popularity in orthodontic treatments. Dental attachments significantly contribute to shortening treatment duration and enhancing orthodontic outcomes. The automation of tailor-made dental attachments for individual teeth plays a crucial role in the field of orthodontics. This is because they enable more precise control over the forces applied, thereby effectively facilitating tooth movement. This study introduces an automated algorithm that generates dental attachments based on the orthodontic path. The algorithm automatically selects and places the appropriate type of attachment according to the magnitude of rotation and translation of teeth during orthodontic procedures. It adjusts the position and posture of the attachments to fit the teeth accurately. To validate the effectiveness of automatically placed attachments in guiding teeth along the predetermined path, this study employs finite element analysis to simulate the impact of attachments on teeth. Comparative analyses between the automated method and traditional manual techniques show that the proposed algorithm significantly enhances the precision and efficiency of attachment placement. Additionally, finite element simulations confirm the feasibility and effectiveness of this approach in clinical orthodontic applications, providing a novel technical pathway for automating attachment placement in orthodontic treatments and offering significant practical value for personalized and efficient orthodontic care.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102320"},"PeriodicalIF":1.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140649955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An attention enhanced dual graph neural network for mesh denoising 用于网格去噪的注意力增强型双图神经网络
IF 1.5 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-04-24 DOI: 10.1016/j.cagd.2024.102307
Mengxing Wang , Yi-Fei Feng , Bowen Lyu , Li-Yong Shen , Chun-Ming Yuan
{"title":"An attention enhanced dual graph neural network for mesh denoising","authors":"Mengxing Wang ,&nbsp;Yi-Fei Feng ,&nbsp;Bowen Lyu ,&nbsp;Li-Yong Shen ,&nbsp;Chun-Ming Yuan","doi":"10.1016/j.cagd.2024.102307","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102307","url":null,"abstract":"<div><p>Mesh denoising is a crucial research topic in geometric processing, as it is widely used in reverse engineering and 3D modeling. The main objective of denoising is to eliminate noise while preserving sharp features. In this paper, we propose a novel denoising method called Attention Enhanced Dual Mesh Denoise (ADMD), which is based on a graph neural network and attention mechanism. ADMD simulates the two-stage denoising method by using a new training strategy and total variation (TV) regular term to enhance feature retention. Our experiments have demonstrated that ADMD can achieve competitive or superior results to state-of-the-art methods for noise CAD models, non-CAD models, and real-scanned data. Moreover, our method can effectively handle large mesh models with different-scale noisy situations and prevent model shrinking after mesh denoising.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102307"},"PeriodicalIF":1.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing nodes for plane data points by constructing cubic polynomial with constraints 通过构建带约束条件的三次多项式计算平面数据点的节点
IF 1.5 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-04-24 DOI: 10.1016/j.cagd.2024.102308
Hua Wang , Fan Zhang
{"title":"Computing nodes for plane data points by constructing cubic polynomial with constraints","authors":"Hua Wang ,&nbsp;Fan Zhang","doi":"10.1016/j.cagd.2024.102308","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102308","url":null,"abstract":"<div><p>To construct a parametric polynomial curve for interpolating a set of data points, the interpolation accuracy and shape of the constructed curve are influenced by two principal factors: parameterization of the data points (computing a node for each data point) and interpolation method. A new method of computing nodes for a set of data points was proposed. In this paper, the functional relationship between data points and corresponding nodes in cubic polynomials was established. Using this functional relationship, a functional cubic polynomial with one degree of freedom can pass through four adjacent data points. The degree of the freedom can be represented by two adjacent node intervals can be obtained by minimizing the cubic terms of the cubic polynomial. Since each node is computed in different node spaces, a method for constructing a quadratic curve is presented, which transforms all the quadratic curves into a unified form to compute nodes. Nodes computed using the new method exhibit quadratic polynomial precision, i.e., if the set of data point is taken from a quadratic polynomial <span><math><mi>F</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, the nodes by the new method are used to construct a interpolation curve, an interpolation method reproducing quadratic polynomial gives quadratic polynomial <span><math><mi>F</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. The primary advantage of the proposed method is that the constructed curve has a shape described by data points. Another advantage of the new method is that the nodes computed by it have affine invariance. The experimental results indicate that the curve constructed by the nodes using the new method has a better interpolation accuracy and shape compared to that constructed using other methods.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102308"},"PeriodicalIF":1.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140649954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A task-driven network for mesh classification and semantic part segmentation 用于网格分类和语义部分分割的任务驱动网络
IF 1.5 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-04-24 DOI: 10.1016/j.cagd.2024.102304
Qiujie Dong , Xiaoran Gong , Rui Xu , Zixiong Wang , Junjie Gao , Shuangmin Chen , Shiqing Xin , Changhe Tu , Wenping Wang
{"title":"A task-driven network for mesh classification and semantic part segmentation","authors":"Qiujie Dong ,&nbsp;Xiaoran Gong ,&nbsp;Rui Xu ,&nbsp;Zixiong Wang ,&nbsp;Junjie Gao ,&nbsp;Shuangmin Chen ,&nbsp;Shiqing Xin ,&nbsp;Changhe Tu ,&nbsp;Wenping Wang","doi":"10.1016/j.cagd.2024.102304","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102304","url":null,"abstract":"<div><p>Given the rapid advancements in geometric deep-learning techniques, there has been a dedicated effort to create mesh-based convolutional operators that act as a link between irregular mesh structures and widely adopted backbone networks. Despite the numerous advantages of Convolutional Neural Networks (CNNs) over Multi-Layer Perceptrons (MLPs), mesh-oriented CNNs often require intricate network architectures to tackle irregularities of a triangular mesh. These architectures not only demand that the mesh be manifold and watertight but also impose constraints on the abundance of training samples. In this paper, we note that for specific tasks such as mesh classification and semantic part segmentation, large-scale shape features play a pivotal role. This is in contrast to the realm of shape correspondence, where a comprehensive understanding of 3D shapes necessitates considering both local and global characteristics. Inspired by this key observation, we introduce a task-driven neural network architecture that seamlessly operates in an end-to-end fashion. Our method takes as input mesh vertices equipped with the heat kernel signature (HKS) and dihedral angles between adjacent faces. Notably, we replace the conventional convolutional module, commonly found in ResNet architectures, with MLPs and incorporate Layer Normalization (LN) to facilitate layer-wise normalization. Our approach, with a seemingly straightforward network architecture, demonstrates an accuracy advantage. It exhibits a marginal 0.1% improvement in the mesh classification task and a substantial 1.8% enhancement in the mesh part segmentation task compared to state-of-the-art methodologies. Moreover, as the number of training samples decreases to 1/50 or even 1/100, the accuracy advantage of our approach becomes more pronounced. In summary, our convolution-free network is tailored for specific tasks relying on large-scale shape features and excels in the situation with a limited number of training samples, setting itself apart from state-of-the-art methodologies.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102304"},"PeriodicalIF":1.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two novel iterative approaches for improved LSPIA convergence 改进 LSPIA 收敛性的两种新型迭代方法
IF 1.5 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-04-24 DOI: 10.1016/j.cagd.2024.102312
Chengzhi Liu , Nian-Ci Wu , Juncheng Li , Lijuan Hu
{"title":"Two novel iterative approaches for improved LSPIA convergence","authors":"Chengzhi Liu ,&nbsp;Nian-Ci Wu ,&nbsp;Juncheng Li ,&nbsp;Lijuan Hu","doi":"10.1016/j.cagd.2024.102312","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102312","url":null,"abstract":"<div><p>This paper introduces two improved variants of the least squares progressive-iterative approximation (LSPIA) by leveraging momentum techniques. Specifically, based on the Polyak's and Nesterov's momentum techniques, the proposed methods utilize the previous iteration information to update the control points. We name these two methods PmLSPIA and NmLSPIA, respectively. The introduction of momentum enhances the determination of the search directions, leading to a significant improvement in convergence rate. The geometric interpretations of PmLSPIA and NmLSPIA are elucidated, providing insights into the underlying principles of these accelerated algorithms. Rigorous convergence analyses are conducted, revealing that both PmLSPIA and NmLSPIA exhibit faster convergence than LSPIA. Numerical results further validate the efficacy of the proposed algorithms.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102312"},"PeriodicalIF":1.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140649956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An adaptive collocation method on implicit domains using weighted extended THB-splines 使用加权扩展 THB-样条线的隐式域自适应配准法
IF 1.5 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-04-23 DOI: 10.1016/j.cagd.2024.102297
Jingjing Yang , Chun-Gang Zhu
{"title":"An adaptive collocation method on implicit domains using weighted extended THB-splines","authors":"Jingjing Yang ,&nbsp;Chun-Gang Zhu","doi":"10.1016/j.cagd.2024.102297","DOIUrl":"10.1016/j.cagd.2024.102297","url":null,"abstract":"<div><p>Implicit representations possess many merits when dealing with geometries with certain properties, such as small holes, reentrant corners and other complex details. Truncated hierarchical B-splines (THB-splines) has recently emerged as a novel tool in many fields including design and analysis due to its local refinement ability. In this paper, we propose an adaptive collocation method with weighted extended THB-splines (WETHB-splines) on implicit domains. We modify the classification strategy for the WETHB-basis, and the centers of the supports of inner THB-splines on each level are chosen to be collocation points. We also use weighted collocation in the transition regions, in order to enrich information concerning the hierarchical basis. In contrast to the traditional WEB-collocation method, the proposed approach possesses much higher convergence rate. To show the efficiency and superiority of the proposed method, numerical examples in two and three dimensions are performed to solve Poisson's equations.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102297"},"PeriodicalIF":1.5,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140785011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-precision teeth reconstruction based on automatic multimodal fusion with CBCT and IOS 基于 CBCT 和 IOS 自动多模态融合的高精度牙齿重建技术
IF 1.5 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-04-23 DOI: 10.1016/j.cagd.2024.102299
Zhiyuan Ren , Long Ma , Minfeng Xu , Guangshun Wei , Shaojie Zhuang , Yuanfeng Zhou
{"title":"High-precision teeth reconstruction based on automatic multimodal fusion with CBCT and IOS","authors":"Zhiyuan Ren ,&nbsp;Long Ma ,&nbsp;Minfeng Xu ,&nbsp;Guangshun Wei ,&nbsp;Shaojie Zhuang ,&nbsp;Yuanfeng Zhou","doi":"10.1016/j.cagd.2024.102299","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102299","url":null,"abstract":"<div><p>In digital orthodontic treatment, the high-precision reconstruction of complete teeth, encompassing both the crown and the actual root, plays a pivotal role. Current mainstream techniques, prioritizing the high resolution of intraoral scanned models (IOS), are confined to using IOS data for orthodontic treatments. However, the lack of root information in the IOS data may lead to complications such as dehiscence. In contrast, Cone Beam Computed Tomography (CBCT) data encompasses comprehensive dental information with roots. Nonetheless, the radiative character of CBCT scans renders patients unsuitable for repeated examinations in a short time. In addition, lower scanning precision of CBCT leads to suboptimal teeth segmentation outcomes, hindering the accurate representation of dental occlusal relationships. Therefore, in order to fully utilize the complementarity between dental multimodal data, we propose a method for high-precision 3D teeth model reconstruction based on IOS and CBCT, which mainly consists of global rigid registration and local nonrigid registration. Specifically, we extract the priori information of dental arch curves for coarse alignment to provide a good initial position for the Iterative Closest Point (ICP) algorithm, and design a conformal parameterization method for a single tooth to effectively obtain the point correspondence between IOS and CBCT crowns. The rough crown of the CBCT will gradually fit towards the IOS through iterative optimization of nonrigid registration. The experimental results show that our method robustly fuses the advantageous features of IOS and CBCT. The 3D teeth model reconstructed by our method contains the high-precision crown of IOS and the real root of CBCT, which can be effectively used in clinical orthodontic treatment.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102299"},"PeriodicalIF":1.5,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D auxetic linkage based on Kirigami 基于桐纸的 3D 辅助连接装置
IF 1.5 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-04-23 DOI: 10.1016/j.cagd.2024.102296
Xiaopeng Sun , Shihan Liu , Zhiqiang Luo , Zhongtai Yang
{"title":"3D auxetic linkage based on Kirigami","authors":"Xiaopeng Sun ,&nbsp;Shihan Liu ,&nbsp;Zhiqiang Luo ,&nbsp;Zhongtai Yang","doi":"10.1016/j.cagd.2024.102296","DOIUrl":"10.1016/j.cagd.2024.102296","url":null,"abstract":"<div><p>The structural design of 3D auxetic linkages is a burgeoning field in digital manufacturing. This article presents a novel algorithm for designing 3D auxetic linkage structures based on Kirigami principles to address existing limitations. The 3D input model is initially mapped to a 2D space using conformal mapping based on the BFF method. This is followed by 2D re-meshing using an equilateral triangle mesh. Subsequently, a 3D topological mesh of the auxetic linkage is calculated through inverse mapping based on directed area. We then introduce new basic rotating and non-rotating units, employing them as the initial structure of the 3D auxetic linkage in accordance with Kirigami techniques. Lastly, a deformation energy function is defined to optimize the shape of the rotating units. The vertex coordinates of the non-rotating units are updated according to the optimized positions of the rotating units, thereby generating an optimal 3D auxetic linkage structure. Experimental results validate the effectiveness and accuracy of our algorithm. Quantitative analyses of structural porosity and optimization accuracy, as well as comparisons with related works, indicate that our algorithm yields structures with smaller shape errors.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102296"},"PeriodicalIF":1.5,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140797353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
D3Former: Jointly learning repeatable dense detectors and feature-enhanced descriptors via saliency-guided transformer D3Former:通过显著性引导变换器联合学习可重复的密集检测器和特征增强描述符
IF 1.5 4区 计算机科学
Computer Aided Geometric Design Pub Date : 2024-04-23 DOI: 10.1016/j.cagd.2024.102300
Junjie Gao , Pengfei Wang , Qiujie Dong , Qiong Zeng , Shiqing Xin , Caiming Zhang
{"title":"D3Former: Jointly learning repeatable dense detectors and feature-enhanced descriptors via saliency-guided transformer","authors":"Junjie Gao ,&nbsp;Pengfei Wang ,&nbsp;Qiujie Dong ,&nbsp;Qiong Zeng ,&nbsp;Shiqing Xin ,&nbsp;Caiming Zhang","doi":"10.1016/j.cagd.2024.102300","DOIUrl":"https://doi.org/10.1016/j.cagd.2024.102300","url":null,"abstract":"<div><p>Establishing accurate and representative matches is a crucial step in addressing the point cloud registration problem. A commonly employed approach involves detecting keypoints with salient geometric features and subsequently mapping these keypoints from one frame of the point cloud to another. However, methods within this category are hampered by the repeatability of the sampled keypoints. In this paper, we introduce a saliency-guided trans<strong>former</strong>, referred to as <em>D3Former</em>, which entails the joint learning of repeatable <strong>D</strong>ense <strong>D</strong>etectors and feature-enhanced <strong>D</strong>escriptors. The model comprises a Feature Enhancement Descriptor Learning (FEDL) module and a Repetitive Keypoints Detector Learning (RKDL) module. The FEDL module utilizes a region attention mechanism to enhance feature distinctiveness, while the RKDL module focuses on detecting repeatable keypoints to enhance matching capabilities. Extensive experimental results on challenging indoor and outdoor benchmarks demonstrate that our proposed method consistently outperforms state-of-the-art point cloud matching methods. Notably, tests on 3DLoMatch, even with a low overlap ratio, show that our method consistently outperforms recently published approaches such as RoReg and RoITr. For instance, with the number of extracted keypoints reduced to 250, the registration recall scores for RoReg, RoITr, and our method are 64.3%, 73.6%, and 76.5%, respectively.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102300"},"PeriodicalIF":1.5,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信