High-order shape interpolation

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Zhaobin Huang, Shibo Liu, Xiao-Ming Fu
{"title":"High-order shape interpolation","authors":"Zhaobin Huang,&nbsp;Shibo Liu,&nbsp;Xiao-Ming Fu","doi":"10.1016/j.cagd.2024.102301","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a simple yet effective method to interpolate high-order meshes. Given two manifold high-order triangular (or tetrahedral) meshes with identical connectivity, our goal is to generate a continuum of curved shapes with as little distortion as possible in the mapping from the source mesh to the interpolated mesh. Our algorithm contains two steps: (1) linearly blend the pullback metric of the identity mapping and the input mapping between two Bézier elements on a set of sampling points; (2) project the interpolated metric into the metric space between Bézier elements using the Newton method for nonlinear optimization. We demonstrate the feasibility and practicability of the method for high-order meshes through extensive experiments in both 2D and 3D.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102301"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000359","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a simple yet effective method to interpolate high-order meshes. Given two manifold high-order triangular (or tetrahedral) meshes with identical connectivity, our goal is to generate a continuum of curved shapes with as little distortion as possible in the mapping from the source mesh to the interpolated mesh. Our algorithm contains two steps: (1) linearly blend the pullback metric of the identity mapping and the input mapping between two Bézier elements on a set of sampling points; (2) project the interpolated metric into the metric space between Bézier elements using the Newton method for nonlinear optimization. We demonstrate the feasibility and practicability of the method for high-order meshes through extensive experiments in both 2D and 3D.

高阶形状插值
我们提出了一种简单而有效的高阶网格插值方法。给定两个具有相同连通性的流形高阶三角形(或四面体)网格,我们的目标是生成一个连续的曲线图形,在从源网格到插值网格的映射中尽可能减少变形。我们的算法包含两个步骤:(1) 在一组采样点上线性混合两个贝塞尔元素之间的标识映射和输入映射的回拉度量;(2) 使用牛顿非线性优化方法将插值度量投影到贝塞尔元素之间的度量空间。我们通过大量二维和三维实验证明了该方法在高阶网格上的可行性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Aided Geometric Design
Computer Aided Geometric Design 工程技术-计算机:软件工程
CiteScore
3.50
自引率
13.30%
发文量
57
审稿时长
60 days
期刊介绍: The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following: -Mathematical and Geometric Foundations- Curve, Surface, and Volume generation- CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision- Industrial, medical, and scientific applications. The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信