Computational Statistics & Data Analysis最新文献

筛选
英文 中文
Latent-class trajectory modeling with a heterogeneous mean-variance relation 基于异构均值-方差关系的潜类轨迹建模
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2025-05-02 DOI: 10.1016/j.csda.2025.108199
Niek G.P. Den Teuling , Francesco Ungolo , Steffen C. Pauws , Edwin R. van den Heuvel
{"title":"Latent-class trajectory modeling with a heterogeneous mean-variance relation","authors":"Niek G.P. Den Teuling ,&nbsp;Francesco Ungolo ,&nbsp;Steffen C. Pauws ,&nbsp;Edwin R. van den Heuvel","doi":"10.1016/j.csda.2025.108199","DOIUrl":"10.1016/j.csda.2025.108199","url":null,"abstract":"<div><div>The benefit of addressing heteroskedastic residual variances across trajectories is investigated with the purpose of finding clusters of longitudinal trajectories. Models are proposed to account for class-specific heteroskedasticity through a mean-variance relation or random residual variance, thereby accounting for trajectory-specific variance. The analyzed latent-class trajectory models are an extension of growth mixture models (GMM). The estimation bias of the model parameters and the recoverability of the number of latent classes are assessed under various data-generating models and settings by means of a simulation study. Furthermore, the empirical applicability of these models is demonstrated through the analysis of the time-varying incidence rate of COVID-19 cases across counties in the United States. Overall, the class-specific mean-variance could be reliably estimated by the proposed models in datasets comprising 250 trajectories. In addition, the extended GMM accounting for the residual random variance showed improved group trajectory estimation over the standard GMM.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"210 ","pages":"Article 108199"},"PeriodicalIF":1.5,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143904339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A goodness-of-fit test for geometric Brownian motion 几何布朗运动的拟合优度检验
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2025-04-23 DOI: 10.1016/j.csda.2025.108196
Daniel Gaigall , Philipp Wübbolding
{"title":"A goodness-of-fit test for geometric Brownian motion","authors":"Daniel Gaigall ,&nbsp;Philipp Wübbolding","doi":"10.1016/j.csda.2025.108196","DOIUrl":"10.1016/j.csda.2025.108196","url":null,"abstract":"<div><div>A new goodness-of-fit test for the composite null hypothesis that data originate from a geometric Brownian motion is studied in the functional data setting. This is equivalent to testing if the data are from a scaled Brownian motion with linear drift. Critical values for the test are obtained, ensuring that the specified significance level is achieved in finite samples. The asymptotic behavior of the test statistic under the null distribution and alternatives is studied, and it is also demonstrated that the test is consistent. Furthermore, the proposed approach offers advantages in terms of fast and simple implementation. A comprehensive simulation study shows that the power of the new test compares favorably to that of existing methods. A key application is the assessment of financial time series for the suitability of the Black-Scholes model. Examples relating to various stock and interest rate time series are presented in order to illustrate the proposed test.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"210 ","pages":"Article 108196"},"PeriodicalIF":1.5,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143868689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simultaneous confidence-bounded true discovery proportion perspective on localizing differences in smooth terms in regression models 回归模型中平滑项的局部化差异的同步置信度有界真发现比例视角
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2025-04-23 DOI: 10.1016/j.csda.2025.108197
David Swanson
{"title":"A simultaneous confidence-bounded true discovery proportion perspective on localizing differences in smooth terms in regression models","authors":"David Swanson","doi":"10.1016/j.csda.2025.108197","DOIUrl":"10.1016/j.csda.2025.108197","url":null,"abstract":"<div><div>A method is demonstrated for localizing where two spline terms, or smooths, differ using a true discovery proportion (TDP)-based interpretation. The procedure yields a statement on the proportion of some region where true differences exist between two smooths. The methodology avoids ad hoc approaches to making such statements, like subsetting the data and performing hypothesis tests on the truncated spline terms. TDP estimates are 1-<em>α</em> confidence-bounded simultaneously, which means that a region's TDP estimate is a lower bound on the proportion of actual differences, or true discoveries, in that region, with high confidence regardless of the number of estimates made. The procedure is based on closed-testing using Simes local test. This local test requires that the multivariate <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> test statistics of generalized Wishart type underlying the method be positive regression dependent on subsets (PRDS), a result for which evidence is presented suggesting that the condition holds. Consistency of the procedure is demonstrated for generalized additive models with the tuning parameter chosen by REML or GCV, and the achievement of confidence-bounded TDP is shown in simulation as is an analysis of walking gait.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"211 ","pages":"Article 108197"},"PeriodicalIF":1.5,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-clustering multi-view data using the Latent Block Model 使用潜在块模型的多视图数据共聚类
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2025-04-10 DOI: 10.1016/j.csda.2025.108188
Joshua Tobin , Michaela Black , James Ng , Debbie Rankin , Jonathan Wallace , Catherine Hughes , Leane Hoey , Adrian Moore , Jinling Wang , Geraldine Horigan , Paul Carlin , Helene McNulty , Anne M. Molloy , Mimi Zhang
{"title":"Co-clustering multi-view data using the Latent Block Model","authors":"Joshua Tobin ,&nbsp;Michaela Black ,&nbsp;James Ng ,&nbsp;Debbie Rankin ,&nbsp;Jonathan Wallace ,&nbsp;Catherine Hughes ,&nbsp;Leane Hoey ,&nbsp;Adrian Moore ,&nbsp;Jinling Wang ,&nbsp;Geraldine Horigan ,&nbsp;Paul Carlin ,&nbsp;Helene McNulty ,&nbsp;Anne M. Molloy ,&nbsp;Mimi Zhang","doi":"10.1016/j.csda.2025.108188","DOIUrl":"10.1016/j.csda.2025.108188","url":null,"abstract":"<div><div>The Latent Block Model (LBM) is a prominent model-based co-clustering method, returning parametric representations of each block-cluster and allowing the use of well-grounded model selection methods. Although the LBM has been adapted to accommodate various feature types, it cannot be applied to datasets consisting of multiple distinct sets of features, termed views, for a common set of observations. The multi-view LBM is introduced herein, extending the LBM method to multi-view data, where each view marginally follows an LBM. For any pair of two views, the dependence between them is captured by a row-cluster membership matrix. A likelihood-based approach is formulated for parameter estimation, harnessing a stochastic EM algorithm merged with a Gibbs sampler, while an ICL criterion is formulated to determine the number of row- and column-clusters in each view. To justify the application of the multi-view approach, hypothesis tests are formulated to evaluate the independence of row-clusters across views, with the testing procedure seamlessly integrated into the estimation framework. A penalty scheme is also introduced to induce sparsity in row-clusterings. The algorithm's performance is validated using synthetic and real-world datasets, accompanied by recommendations for optimal parameter selection. Finally, the multi-view co-clustering method is applied to a complex genomics dataset, and is shown to provide new insights for high-dimension multi-view problems.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"210 ","pages":"Article 108188"},"PeriodicalIF":1.5,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143868688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-parametric tests for cross-dependence based on multivariate extensions of ordinal patterns 基于有序模式多元扩展的交叉依赖非参数检验
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2025-04-10 DOI: 10.1016/j.csda.2025.108189
Angelika Silbernagel , Christian H. Weiß , Alexander Schnurr
{"title":"Non-parametric tests for cross-dependence based on multivariate extensions of ordinal patterns","authors":"Angelika Silbernagel ,&nbsp;Christian H. Weiß ,&nbsp;Alexander Schnurr","doi":"10.1016/j.csda.2025.108189","DOIUrl":"10.1016/j.csda.2025.108189","url":null,"abstract":"<div><div>Analyzing the cross-dependence within sequentially observed pairs of random variables is an interesting mathematical problem that also has several practical applications. Most of the time, classical dependence measures like Pearson's correlation are used to this end. This quantity, however, only measures linear dependence and has other drawbacks as well. Different concepts for measuring cross-dependence in sequentially observed random vectors, which are based on so-called ordinal patterns or multivariate generalizations of them, are described. In all cases, limiting distributions of the corresponding test statistics are derived. In a simulation study, the performance of these statistics is compared with three competitors, namely, classical Pearson's and Spearman's correlation as well as the rank-based Chatterjee's correlation coefficient. The applicability of the test statistics is illustrated by using them on two real-world data examples.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"210 ","pages":"Article 108189"},"PeriodicalIF":1.5,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143814833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A flexible mixed-membership model for community and enterotype detection for microbiome data 一种灵活的混合成员模型,用于微生物组数据的社区和肠型检测
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2025-04-04 DOI: 10.1016/j.csda.2025.108181
Alice Giampino, Roberto Ascari, Sonia Migliorati
{"title":"A flexible mixed-membership model for community and enterotype detection for microbiome data","authors":"Alice Giampino,&nbsp;Roberto Ascari,&nbsp;Sonia Migliorati","doi":"10.1016/j.csda.2025.108181","DOIUrl":"10.1016/j.csda.2025.108181","url":null,"abstract":"<div><div>Understanding how the human gut microbiome affects host health is challenging due to the wide interindividual variability, sparsity, and high dimensionality of microbiome data. Mixed-membership models have been previously applied to these data to detect latent communities of bacterial taxa that are expected to co-occur. The most widely used mixed-membership model is latent Dirichlet allocation (LDA). However, LDA is limited by the rigidity of the Dirichlet distribution imposed on the community proportions, which hinders its ability to model dependencies and account for overdispersion. To address this limitation, a generalization of LDA is proposed that introduces greater flexibility into the covariance matrix by incorporating the flexible Dirichlet (FD), a specific identifiable mixture with Dirichlet components. In addition to identifying communities, the new model enables the detection of enterotypes, i.e., clusters of samples with similar microbe composition. For inferential purposes, a computationally efficient collapsed Gibbs sampler that exploits the conjugacy of the FD distribution with respect to the multinomial model is proposed. A simulation study demonstrates the model's ability to accurately recover true parameter values by minimizing appropriate compositional discrepancy measures between the true and estimated values. Additionally, the model correctly identifies the number of communities, as evidenced by perplexity scores. Moreover, an application to the COMBO dataset highlights its effectiveness in detecting biologically significant and coherent communities and enterotypes, revealing a broader range of correlations between community abundances. These results underscore the new model as a definite improvement over LDA.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"210 ","pages":"Article 108181"},"PeriodicalIF":1.5,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143792034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiply robust estimation of causal effects using linked data 使用关联数据乘以因果效应的稳健估计
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2025-04-02 DOI: 10.1016/j.csda.2025.108175
Shanshan Luo , Yechi Zhang , Wei Li , Zhi Geng
{"title":"Multiply robust estimation of causal effects using linked data","authors":"Shanshan Luo ,&nbsp;Yechi Zhang ,&nbsp;Wei Li ,&nbsp;Zhi Geng","doi":"10.1016/j.csda.2025.108175","DOIUrl":"10.1016/j.csda.2025.108175","url":null,"abstract":"<div><div>Unmeasured confounding presents a common challenge in observational studies, potentially making standard causal parameters unidentifiable without additional assumptions. Given the increasing availability of diverse data sources, exploiting data linkage offers a potential solution to mitigate unmeasured confounding within a primary study of interest. However, this approach often introduces selection bias, as data linkage is feasible only for a subset of the study population. To address such a concern, this paper explores three nonparametric identification strategies assuming that a unit's inclusion in the linked cohort is determined solely by the observed confounders, while acknowledging that the ignorability assumption may depend on some partially unobserved covariates. The existence of multiple identification strategies motivates the development of estimators that effectively capture distinct components of the observed data distribution. Appropriately combining these estimators yields triply robust estimators for the average treatment effect. These estimators remain consistent if at least one of the three distinct parts of the observed data law is correct. Moreover, they are locally efficient if all the models are correctly specified. The proposed estimators are evaluated using simulation studies and real data analysis.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"209 ","pages":"Article 108175"},"PeriodicalIF":1.5,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143769157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eliciting prior information from clinical trials via calibrated Bayes factor 通过校正贝叶斯因子从临床试验中提取先验信息
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2025-03-31 DOI: 10.1016/j.csda.2025.108180
Roberto Macrì Demartino , Leonardo Egidi , Nicola Torelli , Ioannis Ntzoufras
{"title":"Eliciting prior information from clinical trials via calibrated Bayes factor","authors":"Roberto Macrì Demartino ,&nbsp;Leonardo Egidi ,&nbsp;Nicola Torelli ,&nbsp;Ioannis Ntzoufras","doi":"10.1016/j.csda.2025.108180","DOIUrl":"10.1016/j.csda.2025.108180","url":null,"abstract":"<div><div>In the Bayesian framework power prior distributions are increasingly adopted in clinical trials and similar studies to incorporate external and past information, typically to inform the parameter associated with a treatment effect. Their use is particularly effective in scenarios with small sample sizes and where robust prior information is available. A crucial component of this methodology is represented by its weight parameter, which controls the volume of historical information incorporated into the current analysis. Although this parameter can be modeled as either fixed or random, eliciting its prior distribution via a full Bayesian approach remains challenging. In general, this parameter should be carefully selected to accurately reflect the available historical information without dominating the posterior inferential conclusions. A novel simulation-based calibrated Bayes factor procedure is proposed to elicit the prior distribution of the weight parameter, allowing it to be updated according to the strength of the evidence in the data. The goal is to facilitate the integration of historical data when there is agreement with current information and to limit it when discrepancies arise in terms, for instance, of prior-data conflicts. The performance of the proposed method is tested through simulation studies and applied to real data from clinical trials.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"209 ","pages":"Article 108180"},"PeriodicalIF":1.5,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143746613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discretization: Privacy-preserving data publishing for causal discovery 离散化:隐私保护数据发布的因果发现
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2025-03-27 DOI: 10.1016/j.csda.2025.108174
Youngmin Ahn , Woongjoon Park , Gunwoong Park
{"title":"Discretization: Privacy-preserving data publishing for causal discovery","authors":"Youngmin Ahn ,&nbsp;Woongjoon Park ,&nbsp;Gunwoong Park","doi":"10.1016/j.csda.2025.108174","DOIUrl":"10.1016/j.csda.2025.108174","url":null,"abstract":"<div><div>As the importance of data privacy continues to grow, data masking has emerged as a crucial method. Notably, data masking techniques aim to protect individual privacy, while enabling data analysts to derive meaningful statistical results, such as the identification of directional or causal relationships between variables. Hence, this study demonstrates the advantages of a quantile-based discretization for protecting privacy and uncovering the relationships between variables in Gaussian directed acyclic graphical (DAG) models. Specifically, it introduces quantile-discretized Gaussian DAG models where each node variable is discretized based on the quantiles. Additionally, it proposes the bi-partition process, which aids in recovering the covariance matrix; hence, the models can be identifiable. Furthermore, a consistent algorithm is developed for learning the underlying structure using the quantile-based discretized data. Finally, through numerical experiments and the application of DAG learning algorithms to discretized MLB data, the proposed algorithm is demonstrated to significantly outperform the state-of-the-art DAG model learning algorithms.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"209 ","pages":"Article 108174"},"PeriodicalIF":1.5,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143738596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient regularized estimation of graphical proportional hazards model with interval-censored data 区间截尾数据下图形比例风险模型的有效正则化估计
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2025-03-27 DOI: 10.1016/j.csda.2025.108178
Huimin Lu , Yilong Wang , Heming Bing , Shuying Wang , Niya Li
{"title":"Efficient regularized estimation of graphical proportional hazards model with interval-censored data","authors":"Huimin Lu ,&nbsp;Yilong Wang ,&nbsp;Heming Bing ,&nbsp;Shuying Wang ,&nbsp;Niya Li","doi":"10.1016/j.csda.2025.108178","DOIUrl":"10.1016/j.csda.2025.108178","url":null,"abstract":"<div><div>Variable selection is discussed in many cases in survival analysis. In particular, the analysis of using proportional hazards (PH) models to deal with censored survival data has established a large amount of literature. Based on interval-censored data, this paper discusses the situation of complex network structures existing in covariates. To address the issue, a more flexible and versatile PH model has been developed by combining probabilistic graphical models with PH models, to describe the correlation between covariates. Based on the block coordinate descent method, a penalized estimation method is proposed, which can simultaneously perform variable selection and parameter estimation. The effectiveness of the proposed model and its parameter estimation method are evaluated through simulation studies and the analysis of clinical trial data related to Alzheimer's disease, confirming the reliability and accuracy of the proposed model and method.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"209 ","pages":"Article 108178"},"PeriodicalIF":1.5,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143738597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信