{"title":"High-dimensional response growth curve modeling for longitudinal neuroimaging analysis","authors":"Lu Wang , Xiang Lyu , Lexin Li","doi":"10.1016/j.csda.2025.108239","DOIUrl":null,"url":null,"abstract":"<div><div>There is increasing interest in modeling high-dimensional longitudinal outcomes in applications such as developmental neuroimaging research. Growth curve model offers a useful tool to capture both the mean growth pattern across individuals, as well as the dynamic changes of outcomes over time within each individual. However, when the number of outcomes is large, it becomes challenging and often infeasible to tackle the large covariance matrix of the random effects involved in the model. A high-dimensional response growth curve model, with three novel components, is proposed: a low-rank factor model structure that substantially reduces the number of parameters in the large covariance matrix, a re-parameterization formulation coupled with a sparsity penalty that selects important fixed and random effect terms, and a computational trick that turns the inversion of a large matrix into the inversion of a stack of small matrices and thus considerably speeds up the computation. An efficient expectation-maximization-type estimation algorithm is developed, and the competitive performance of the proposed method is demonstrated through both simulations and a longitudinal study of brain structural connectivity in association with human immunodeficiency virus.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"212 ","pages":"Article 108239"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016794732500115X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
There is increasing interest in modeling high-dimensional longitudinal outcomes in applications such as developmental neuroimaging research. Growth curve model offers a useful tool to capture both the mean growth pattern across individuals, as well as the dynamic changes of outcomes over time within each individual. However, when the number of outcomes is large, it becomes challenging and often infeasible to tackle the large covariance matrix of the random effects involved in the model. A high-dimensional response growth curve model, with three novel components, is proposed: a low-rank factor model structure that substantially reduces the number of parameters in the large covariance matrix, a re-parameterization formulation coupled with a sparsity penalty that selects important fixed and random effect terms, and a computational trick that turns the inversion of a large matrix into the inversion of a stack of small matrices and thus considerably speeds up the computation. An efficient expectation-maximization-type estimation algorithm is developed, and the competitive performance of the proposed method is demonstrated through both simulations and a longitudinal study of brain structural connectivity in association with human immunodeficiency virus.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]