{"title":"高维带整数值自回归过程","authors":"Nuo Xu, Kai Yang","doi":"10.1016/j.csda.2025.108243","DOIUrl":null,"url":null,"abstract":"<div><div>The modeling of high-dimensional time series has always been an appealing and challenging problem. The main difficulties of modeling high-dimensional time series lie in the curse of dimensionality and complex cross dependence between adjacent components. To solve these problems for high-dimensional time series of counts, a class of high-dimensional and banded integer-valued autoregressive processes without assuming the innovation's distribution is proposed. A banded thinning structure is constructed to diminish the parameters' dimension. The componentwise conditional least squares and weighted conditional least squares methods are developed to estimate the banded autoregressive coefficient matrices. The bandwidth parameter is identified via a marginal Bayesian information criterion method. Some numerical results are provided to show the good performance of the estimators. Finally, the superiority of the proposed model is shown by an application to an air quality data set of different cities.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"212 ","pages":"Article 108243"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-dimensional and banded integer-valued autoregressive processes\",\"authors\":\"Nuo Xu, Kai Yang\",\"doi\":\"10.1016/j.csda.2025.108243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The modeling of high-dimensional time series has always been an appealing and challenging problem. The main difficulties of modeling high-dimensional time series lie in the curse of dimensionality and complex cross dependence between adjacent components. To solve these problems for high-dimensional time series of counts, a class of high-dimensional and banded integer-valued autoregressive processes without assuming the innovation's distribution is proposed. A banded thinning structure is constructed to diminish the parameters' dimension. The componentwise conditional least squares and weighted conditional least squares methods are developed to estimate the banded autoregressive coefficient matrices. The bandwidth parameter is identified via a marginal Bayesian information criterion method. Some numerical results are provided to show the good performance of the estimators. Finally, the superiority of the proposed model is shown by an application to an air quality data set of different cities.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"212 \",\"pages\":\"Article 108243\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947325001197\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325001197","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
High-dimensional and banded integer-valued autoregressive processes
The modeling of high-dimensional time series has always been an appealing and challenging problem. The main difficulties of modeling high-dimensional time series lie in the curse of dimensionality and complex cross dependence between adjacent components. To solve these problems for high-dimensional time series of counts, a class of high-dimensional and banded integer-valued autoregressive processes without assuming the innovation's distribution is proposed. A banded thinning structure is constructed to diminish the parameters' dimension. The componentwise conditional least squares and weighted conditional least squares methods are developed to estimate the banded autoregressive coefficient matrices. The bandwidth parameter is identified via a marginal Bayesian information criterion method. Some numerical results are provided to show the good performance of the estimators. Finally, the superiority of the proposed model is shown by an application to an air quality data set of different cities.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]