{"title":"基于模型的基于惩罚Wishart混合模型的协方差矩阵聚类","authors":"Andrea Cappozzo , Alessandro Casa","doi":"10.1016/j.csda.2025.108232","DOIUrl":null,"url":null,"abstract":"<div><div>Covariance matrices provide a valuable source of information about complex interactions and dependencies within the data. However, from a clustering perspective, this information has often been underutilized and overlooked. Indeed, commonly adopted distance-based approaches tend to rely primarily on mean levels to characterize and differentiate between groups. Recently, there have been promising efforts to cluster covariance matrices directly, thereby distinguishing groups solely based on the relationships between variables. From a model-based perspective, a probabilistic formalization has been provided by considering a mixture model with component densities following a Wishart distribution. Notwithstanding, this approach faces challenges when dealing with a large number of variables, as the number of parameters to be estimated increases quadratically. To address this issue, a sparse Wishart mixture model is proposed, which assumes that the component scale matrices possess a cluster-dependent degree of sparsity. Model estimation is performed by maximizing a penalized log-likelihood, enforcing a covariance graphical lasso penalty on the component scale matrices. This penalty not only reduces the number of non-zero parameters, mitigating the challenges of high-dimensional settings, but also enhances the interpretability of results by emphasizing the most relevant relationships among variables. The proposed methodology is tested on both simulated and real data, demonstrating its ability to unravel the complexities of neuroimaging data and effectively cluster subjects based on the relational patterns among distinct brain regions.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"212 ","pages":"Article 108232"},"PeriodicalIF":1.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-based clustering for covariance matrices via penalized Wishart mixture models\",\"authors\":\"Andrea Cappozzo , Alessandro Casa\",\"doi\":\"10.1016/j.csda.2025.108232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Covariance matrices provide a valuable source of information about complex interactions and dependencies within the data. However, from a clustering perspective, this information has often been underutilized and overlooked. Indeed, commonly adopted distance-based approaches tend to rely primarily on mean levels to characterize and differentiate between groups. Recently, there have been promising efforts to cluster covariance matrices directly, thereby distinguishing groups solely based on the relationships between variables. From a model-based perspective, a probabilistic formalization has been provided by considering a mixture model with component densities following a Wishart distribution. Notwithstanding, this approach faces challenges when dealing with a large number of variables, as the number of parameters to be estimated increases quadratically. To address this issue, a sparse Wishart mixture model is proposed, which assumes that the component scale matrices possess a cluster-dependent degree of sparsity. Model estimation is performed by maximizing a penalized log-likelihood, enforcing a covariance graphical lasso penalty on the component scale matrices. This penalty not only reduces the number of non-zero parameters, mitigating the challenges of high-dimensional settings, but also enhances the interpretability of results by emphasizing the most relevant relationships among variables. The proposed methodology is tested on both simulated and real data, demonstrating its ability to unravel the complexities of neuroimaging data and effectively cluster subjects based on the relational patterns among distinct brain regions.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"212 \",\"pages\":\"Article 108232\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947325001082\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325001082","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Model-based clustering for covariance matrices via penalized Wishart mixture models
Covariance matrices provide a valuable source of information about complex interactions and dependencies within the data. However, from a clustering perspective, this information has often been underutilized and overlooked. Indeed, commonly adopted distance-based approaches tend to rely primarily on mean levels to characterize and differentiate between groups. Recently, there have been promising efforts to cluster covariance matrices directly, thereby distinguishing groups solely based on the relationships between variables. From a model-based perspective, a probabilistic formalization has been provided by considering a mixture model with component densities following a Wishart distribution. Notwithstanding, this approach faces challenges when dealing with a large number of variables, as the number of parameters to be estimated increases quadratically. To address this issue, a sparse Wishart mixture model is proposed, which assumes that the component scale matrices possess a cluster-dependent degree of sparsity. Model estimation is performed by maximizing a penalized log-likelihood, enforcing a covariance graphical lasso penalty on the component scale matrices. This penalty not only reduces the number of non-zero parameters, mitigating the challenges of high-dimensional settings, but also enhances the interpretability of results by emphasizing the most relevant relationships among variables. The proposed methodology is tested on both simulated and real data, demonstrating its ability to unravel the complexities of neuroimaging data and effectively cluster subjects based on the relational patterns among distinct brain regions.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]