Bayesian selection approach for categorical responses via multinomial probit models

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chi-Hsiang Chu , Kuo-Jung Lee , Chien-Chin Hsu , Ray-Bing Chen
{"title":"Bayesian selection approach for categorical responses via multinomial probit models","authors":"Chi-Hsiang Chu ,&nbsp;Kuo-Jung Lee ,&nbsp;Chien-Chin Hsu ,&nbsp;Ray-Bing Chen","doi":"10.1016/j.csda.2025.108233","DOIUrl":null,"url":null,"abstract":"<div><div>A multinomial probit model is proposed to examine a categorical response variable, with the main objective being the identification of the influential variables in the model. To this end, a Bayesian selection technique using two hierarchical indicators is employed. The first indicator denotes a variable's relevance to the categorical response, and the subsequent indicator relates to the variable's importance at a specific categorical level, which aids in assessing its impact at that level. The selection process relies on the posterior indicator samples generated through an MCMC algorithm. The efficacy of our Bayesian selection strategy is demonstrated through both simulation and an application to a real-world example.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"212 ","pages":"Article 108233"},"PeriodicalIF":1.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325001094","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A multinomial probit model is proposed to examine a categorical response variable, with the main objective being the identification of the influential variables in the model. To this end, a Bayesian selection technique using two hierarchical indicators is employed. The first indicator denotes a variable's relevance to the categorical response, and the subsequent indicator relates to the variable's importance at a specific categorical level, which aids in assessing its impact at that level. The selection process relies on the posterior indicator samples generated through an MCMC algorithm. The efficacy of our Bayesian selection strategy is demonstrated through both simulation and an application to a real-world example.
基于多项概率模型的分类响应贝叶斯选择方法
提出了一个多项概率模型来检验分类响应变量,其主要目标是识别模型中的影响变量。为此,贝叶斯选择技术采用了两个层次指标。第一个指标表示变量与分类反应的相关性,随后的指标与变量在特定分类水平上的重要性有关,这有助于评估其在该水平上的影响。选择过程依赖于通过MCMC算法生成的后验指标样本。我们的贝叶斯选择策略的有效性通过模拟和应用到一个现实世界的例子来证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信