Experimental Astronomy最新文献

筛选
英文 中文
Calculation of Cosmic microwave background radiation parameters using COBE/FIRAS dataset 利用 COBE/FIRAS 数据集计算宇宙微波背景辐射参数
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-06-08 DOI: 10.1007/s10686-023-09904-w
Somita Dhal, Sneha Singh, Koustav Konar, R. K. Paul
{"title":"Calculation of Cosmic microwave background radiation parameters using COBE/FIRAS dataset","authors":"Somita Dhal,&nbsp;Sneha Singh,&nbsp;Koustav Konar,&nbsp;R. K. Paul","doi":"10.1007/s10686-023-09904-w","DOIUrl":"10.1007/s10686-023-09904-w","url":null,"abstract":"<div><p>In this paper, we estimate the Cosmic Microwave Background (CMB) temperature using the data of the monopole spectrum from the Cosmic Background Explorer/ Far-Infrared Absolute Spectrophotometer (COBE/FIRAS). Utilising the idea of straight-line fitting, we obtain the temperature and chemical potential. The temperature of the CMB is found to be (2.725007 ± 0.000024) K (only statistical error) by using the monopole spectrum. Handling the data of the monopole spectrum the chemical potential is obtained as (-1.1 ± 3.4) × 10<sup>–5</sup> with an upper bound |µ| &lt; 5.7 × 10<sup>–5 </sup>(95% confidence level). The amplitude of the CMB dipole is found to be, T<sub>amp</sub> = (3.47 ± 0.11) mK. We estimate an upper limit for the rms value of the fluctuation in chemical potential as Δµ &lt; 1.2 × 10<sup>–4</sup> (95% confidence level). The upper limit of y- distortion is calculated as y &lt; 1.0 × 10<sup>–4</sup> (95% confidence level).</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 2-3","pages":"715 - 726"},"PeriodicalIF":3.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81402484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Infrared Thermal Imager to measure the temperature of Back-Up Structure of the TianMa radio telescope 红外热成像仪在天马射电望远镜备用结构温度测量中的应用
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-05-25 DOI: 10.1007/s10686-023-09895-8
Li Fu, Jiansen Tang, Rongbing Zhao, Yongbin Jiang, Jinqing Wang, Qinghui Liu, Zhiqiang Shen, Xu Wang, Haiming Liu
{"title":"Application of Infrared Thermal Imager to measure the temperature of Back-Up Structure of the TianMa radio telescope","authors":"Li Fu,&nbsp;Jiansen Tang,&nbsp;Rongbing Zhao,&nbsp;Yongbin Jiang,&nbsp;Jinqing Wang,&nbsp;Qinghui Liu,&nbsp;Zhiqiang Shen,&nbsp;Xu Wang,&nbsp;Haiming Liu","doi":"10.1007/s10686-023-09895-8","DOIUrl":"10.1007/s10686-023-09895-8","url":null,"abstract":"<div><p>Two infrared thermal imagers have been installed on the TianMa radio telescope (TMRT) to continuously monitor the temperature distributions of the back-up structure (BUS). In order to compensate the measurement error of the infrared thermal imager (ITI) for a BUS, a correction formula, as a function of measuring distance and viewing angle, is proposed. According to the relationship between the locations of the measurement points in the thermographic image and those in the actual structure, the 3D coordinates of the measurement points are determined by a finite element model of the BUS. Then, the measuring distances and viewing angles are calculated using 3D coordinates of the measurement points. The measurement accuracy of the ITI improves from ±2<span>(^{circ })</span>C to ±0.5<span>(^{circ })</span>C with the proposed formula. Additionally, based on the information of rotation angle and rotation speed of the elevation, the problem of the ITI moving with the elevation of the telescope in real time is solved. The temperature data at each elevation are recorded in excel documents respectively which are integrated into a document in chronological order through compiling program. Finally, the temperature of the measurement points at different altazimuthal positions is displayed as curves or contours. The thermal states of about 40% measuring points of the BUS are simultaneously monitored by the ITI, which provides accurate temperature distribution for the prediction of thermal deformations of the BUS.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"223 - 238"},"PeriodicalIF":3.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4981005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radio astronomical images object detection and segmentation: a benchmark on deep learning methods 射电天文图像目标检测和分割:深度学习方法的基准
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-05-05 DOI: 10.1007/s10686-023-09893-w
Renato Sortino, Daniel Magro, Giuseppe Fiameni, Eva Sciacca, Simone Riggi, Andrea DeMarco, Concetto Spampinato, Andrew M. Hopkins, Filomena Bufano, Francesco Schillirò, Cristobal Bordiu, Carmelo Pino
{"title":"Radio astronomical images object detection and segmentation: a benchmark on deep learning methods","authors":"Renato Sortino,&nbsp;Daniel Magro,&nbsp;Giuseppe Fiameni,&nbsp;Eva Sciacca,&nbsp;Simone Riggi,&nbsp;Andrea DeMarco,&nbsp;Concetto Spampinato,&nbsp;Andrew M. Hopkins,&nbsp;Filomena Bufano,&nbsp;Francesco Schillirò,&nbsp;Cristobal Bordiu,&nbsp;Carmelo Pino","doi":"10.1007/s10686-023-09893-w","DOIUrl":"10.1007/s10686-023-09893-w","url":null,"abstract":"<div><p>In recent years, deep learning has been successfully applied in various scientific domains. Following these promising results and performances, it has recently also started being evaluated in the domain of radio astronomy. In particular, since radio astronomy is entering the Big Data era, with the advent of the largest telescope in the world - the Square Kilometre Array (SKA), the task of automatic object detection and instance segmentation is crucial for source finding and analysis. In this work, we explore the performance of the most affirmed deep learning approaches, applied to astronomical images obtained by radio interferometric instrumentation, to solve the task of automatic source detection. This is carried out by applying models designed to accomplish two different kinds of tasks: object detection and semantic segmentation. The goal is to provide an overview of existing techniques, in terms of prediction performance and computational efficiency, to scientists in the astrophysics community who would like to employ machine learning in their research.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"293 - 331"},"PeriodicalIF":3.0,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4221746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Study of solar flares and gamma-ray bursts using low-cost stratospheric balloon borne experiments 利用低成本平流层气球实验研究太阳耀斑和伽马射线暴
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-05-02 DOI: 10.1007/s10686-023-09899-4
Rupnath Sikdar, Sandip K. Chakrabarti, Debashis Bhowmick
{"title":"Study of solar flares and gamma-ray bursts using low-cost stratospheric balloon borne experiments","authors":"Rupnath Sikdar,&nbsp;Sandip K. Chakrabarti,&nbsp;Debashis Bhowmick","doi":"10.1007/s10686-023-09899-4","DOIUrl":"10.1007/s10686-023-09899-4","url":null,"abstract":"<div><p>Solar flare intensity is strongly dependent on the phase in the solar cycle, the structure and dynamics of the magnetic field near sunspots, and also on occasional solar coronal mass ejections. In this paper we study some of the solar flares detected by the stratospheric balloon borne experiments of Indian Centre for Space Physics. We also observe a gamma-ray burst which is believed to be originated from sudden energy release in gamma rays. In the hard X-ray region of 10 − 100 keV, we present and analyze data from various classes of solar flares and a gamma-ray burst. Because of natural constraints present in balloon borne experiments we receive data up to about a height of ∼ 42 km. The Earth’s residual atmosphere at this height absorbs the lower energy part of the spectrum. Moreover, the background radiation (mainly secondary cosmic rays) introduces noise. We show how we circumvent these limitations and create the accurate light curves and the spectra of a few solar flares and a gamma-ray burst.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"61 - 76"},"PeriodicalIF":3.0,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09899-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4096710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral performance of the Microchannel X-ray Telescope on board the SVOM mission SVOM任务上的微通道x射线望远镜的光谱性能
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-04-04 DOI: 10.1007/s10686-022-09886-1
B. Schneider, N. Renault-Tinacci, D. Götz, A. Meuris, P. Ferrando, V. Burwitz, E. Doumayrou, T. Lavanant, N. Meidinger, K. Mercier
{"title":"Spectral performance of the Microchannel X-ray Telescope on board the SVOM mission","authors":"B. Schneider,&nbsp;N. Renault-Tinacci,&nbsp;D. Götz,&nbsp;A. Meuris,&nbsp;P. Ferrando,&nbsp;V. Burwitz,&nbsp;E. Doumayrou,&nbsp;T. Lavanant,&nbsp;N. Meidinger,&nbsp;K. Mercier","doi":"10.1007/s10686-022-09886-1","DOIUrl":"10.1007/s10686-022-09886-1","url":null,"abstract":"<div><p>The Microchannel X-ray Telescope (MXT) is an innovative compact X-ray instrument on board the SVOM astronomical mission dedicated to the study of transient phenomena such as gamma-ray bursts. During 3 weeks, we have tested the MXT flight model at the Panter X-ray test facility under the nominal temperature and vacuum conditions that MXT will undergo in-flight. We collected data at series of characteristic energies probing the entire MXT energy range, from 0.28 keV up to 9 keV, for multiple source positions with the center of the point spread function (PSF) inside and outside the detector field of view (FOV). We stacked the data of the positions with the PSF outside the FOV to obtain a uniformly illuminated matrix and reduced all data sets using a dedicated pipeline. We determined the best spectral performance of MXT using an optimized data processing, especially for the energy calibration and the charge sharing effect induced by the pixel low energy thresholding. Our results demonstrate that MXT is compliant with the instrument requirement regarding the energy resolution (&lt; 80 eV at 1.5 keV), the low and high energy threshold, and the accuracy of the energy calibration (± 20 eV). We also determined the charge transfer inefficiency (<span>(sim 10^{-5})</span>) of the detector and modeled its evolution with energy prior to the irradiation that MXT will undergo during its in-orbit lifetime. Finally, we measured the relation of the energy resolution as function of the photon energy. We determined an equivalent noise charge of <span>(4.9 pm 0.2 mathrm {e}^{-}_{text {rms}})</span> for the MXT detection chain and a Fano factor of 0.131 ± 0.003 in silicon at 208 K, in agreement with previous works. This campaign confirmed the promising scientific performance that MXT will be able to deliver during the mission lifetime.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"77 - 97"},"PeriodicalIF":3.0,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4149135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Improved X-ray Detector (iXRD) on Sharjah-Sat-1, design principles, tests and ground calibration 沙迦- sat -1上的改进型x射线探测器(iXRD),设计原理、测试和地面校准
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-03-08 DOI: 10.1007/s10686-023-09890-z
Emrah Kalemci, Ali M. Altıngün, Ayhan Bozkurt, Alim Rüstem Aslan, Refik Yalçın, Kaya Gökalp, Kaan Veziroğlu, Ilias Fernini, Antonios Manousakis, Ali Yaşar, Milad Diba, Boğaç Karabulut, Egemen Çatal, Onur Öztekin
{"title":"The Improved X-ray Detector (iXRD) on Sharjah-Sat-1, design principles, tests and ground calibration","authors":"Emrah Kalemci,&nbsp;Ali M. Altıngün,&nbsp;Ayhan Bozkurt,&nbsp;Alim Rüstem Aslan,&nbsp;Refik Yalçın,&nbsp;Kaya Gökalp,&nbsp;Kaan Veziroğlu,&nbsp;Ilias Fernini,&nbsp;Antonios Manousakis,&nbsp;Ali Yaşar,&nbsp;Milad Diba,&nbsp;Boğaç Karabulut,&nbsp;Egemen Çatal,&nbsp;Onur Öztekin","doi":"10.1007/s10686-023-09890-z","DOIUrl":"10.1007/s10686-023-09890-z","url":null,"abstract":"<div><p>The iXRD is the primary science payload on <i>Sharjah-Sat-1</i>, a 3U CubeSat expected to be launched in Q4, 2022. Its main scientific goal is monitoring bright hard X-ray sources and transients in 20 - 200 keV band. The iXRD consists of a CdZnTe crystal (6.45 cm<sup>2</sup> area, 5 mm thickness), a Tungsten collimator with square holes with an opening angle of 4.26<sup>∘</sup>, readout and control electronics and power supply circuitry, a back-shield and mechanical structures. Some of the design elements of iXRD have been inherited from the XRD on BeEagleSat with significant improvements in terms of collecting area, X-ray background and electronic noise. In this article, the design of the iXRD is discussed in detail taking into account mechanical, electronic, control software and data handling aspects. Its expected performance is determined after ground calibration. Depending on the pixel size, the energy resolution is 4 - 7 keV at 60 keV and the minimum detectable energy is 19 - 23 keV.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"99 - 116"},"PeriodicalIF":3.0,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4352007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design and performance of the focal plane camera for FXT onboard the Einstein Probe satellite 爱因斯坦探测卫星FXT焦平面相机的设计与性能
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-02-23 DOI: 10.1007/s10686-023-09891-y
Weiwei Cui, Hao Wang, Xiaofan Zhao, Juan Zhang, Norbert Meidinger, Yanji Yang, Isabell Keil, Ziliang Zhang, Jia Huo, Juan Wang, Zeyu Song, Fangjun Lu, Jia Ma, Yusa Wang, Jingjing Xu, Yuxuan Zhu, Tianming Li, Wei Li, Laidan Luo, Dawei Han, Zijian Zhao, Dongjie Hou, Xiongtao Yang, Haoyang Geng, Shuo Li, HouLei Chen, QingJun Tang, Yehai Chen, Yong Chen
{"title":"Design and performance of the focal plane camera for FXT onboard the Einstein Probe satellite","authors":"Weiwei Cui,&nbsp;Hao Wang,&nbsp;Xiaofan Zhao,&nbsp;Juan Zhang,&nbsp;Norbert Meidinger,&nbsp;Yanji Yang,&nbsp;Isabell Keil,&nbsp;Ziliang Zhang,&nbsp;Jia Huo,&nbsp;Juan Wang,&nbsp;Zeyu Song,&nbsp;Fangjun Lu,&nbsp;Jia Ma,&nbsp;Yusa Wang,&nbsp;Jingjing Xu,&nbsp;Yuxuan Zhu,&nbsp;Tianming Li,&nbsp;Wei Li,&nbsp;Laidan Luo,&nbsp;Dawei Han,&nbsp;Zijian Zhao,&nbsp;Dongjie Hou,&nbsp;Xiongtao Yang,&nbsp;Haoyang Geng,&nbsp;Shuo Li,&nbsp;HouLei Chen,&nbsp;QingJun Tang,&nbsp;Yehai Chen,&nbsp;Yong Chen","doi":"10.1007/s10686-023-09891-y","DOIUrl":"10.1007/s10686-023-09891-y","url":null,"abstract":"<div><p>The Einstein Probe (EP) satellite is designed for X-ray time-domain astronomy. The Follow-up X-ray Telescope (FXT) is one of the scientific payloads onboard EP. It will mainly be used for the follow-up X-ray observation, and it will also be used for the sky survey and Target of Opportunity (ToO) observation. The focal plane detector of FXT provided by the Max Planck Institute for Extraterrestrial Physics (MPE) adopts a PNCCD sensor. For detector cooling, a helium pulse tube refrigerator is used, provided by the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS), to keep the detector working at a temperature of −90 ± 0.5 °C. The PNCCD driving and data acquisition electronics are developed by the Institute of High Energy Physics (IHEP), CAS. To observe different celestial sources, we designed six filter wheel positions and three scientific operating modes for the PNCCD detector: the full-frame mode, the partial-window mode, and the timing mode. In the full-frame mode, the system frame rate is 20 frame/s and the energy resolution of the whole system reaches 92 eV @ 1.49 keV (FWHM). The frame rate of partial-window mode is 500 frame/s. In the timing mode, the time resolution is about 94 μs. This paper mainly introduces the design and test results of the focal plane camera.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 3","pages":"603 - 624"},"PeriodicalIF":3.0,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09891-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5195772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Performance of the polarization leakage correction in the PILOT data 偏振泄漏校正在PILOT数据中的性能
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-02-13 DOI: 10.1007/s10686-022-09882-5
Jean-Philippe Bernard, Adam Bernard, Hélène Roussel, Ilyes Choubani, Dana Alina, Jonathan Aumont, Annie Hughes, Isabelle Ristorcelli, Samantha Stever, Tomotake Matsumura, Shinya Sugiyama, Kunimoto Komatsu, Giancarlo de Gasperis, Katia Ferrière, Vincent Guillet, Nathalie Ysard, Peter Ade, Paolo de Bernardis, Nicolas Bray, Bruno Crane, Jean-Pierre Dubois, Matt Griffin, Peter Hargrave, Yuying Longval, Stephane Louvel, Bruno Maffei, Silvia Masi, Baptiste Mot, Johan Montel, François Pajot, Etienne Pérot, Nicolas Ponthieu, Louis Rodriguez, Valentin Sauvage, Giorgio Savini, Carole Tucker, François Vacher
{"title":"Performance of the polarization leakage correction in the PILOT data","authors":"Jean-Philippe Bernard,&nbsp;Adam Bernard,&nbsp;Hélène Roussel,&nbsp;Ilyes Choubani,&nbsp;Dana Alina,&nbsp;Jonathan Aumont,&nbsp;Annie Hughes,&nbsp;Isabelle Ristorcelli,&nbsp;Samantha Stever,&nbsp;Tomotake Matsumura,&nbsp;Shinya Sugiyama,&nbsp;Kunimoto Komatsu,&nbsp;Giancarlo de Gasperis,&nbsp;Katia Ferrière,&nbsp;Vincent Guillet,&nbsp;Nathalie Ysard,&nbsp;Peter Ade,&nbsp;Paolo de Bernardis,&nbsp;Nicolas Bray,&nbsp;Bruno Crane,&nbsp;Jean-Pierre Dubois,&nbsp;Matt Griffin,&nbsp;Peter Hargrave,&nbsp;Yuying Longval,&nbsp;Stephane Louvel,&nbsp;Bruno Maffei,&nbsp;Silvia Masi,&nbsp;Baptiste Mot,&nbsp;Johan Montel,&nbsp;François Pajot,&nbsp;Etienne Pérot,&nbsp;Nicolas Ponthieu,&nbsp;Louis Rodriguez,&nbsp;Valentin Sauvage,&nbsp;Giorgio Savini,&nbsp;Carole Tucker,&nbsp;François Vacher","doi":"10.1007/s10686-022-09882-5","DOIUrl":"10.1007/s10686-022-09882-5","url":null,"abstract":"<div><p>The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (<i>PILOT</i>) is a balloon-borne experiment that aims to measure the polarized emission of thermal dust at a wavelength of 240µm (1.2 THz). The <i>PILOT</i> experiment flew from Timmins, Ontario, Canada in 2015 and 2019 and from Alice Springs, Australia in April 2017. The in-flight performance of the instrument during the second flight was described in [1]. In this paper, we present data processing steps that were not presented in [1] and that we have recently implemented to correct for several remaining instrumental effects. The additional data processing concerns corrections related to detector cross-talk and readout circuit memory effects, and leakage from total intensity to polarization. We illustrate the above effects and the performance of our corrections using data obtained during the third flight of <i>PILOT</i>, but the methods used to assess the impact of these effects on the final science-ready data, and our strategies for correcting them will be applied to all <i>PILOT</i> data. We show that the above corrections, and in particular that for the intensity to polarization leakage, which is most critical for accurate polarization measurements with <i>PILOT</i>, are accurate to better than 0.4% as measured on Jupiter during flight#3.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"197 - 222"},"PeriodicalIF":3.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4536468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and testing of the Optics for FXT onboard EP satellite EP卫星FXT光学系统的设计与测试
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-02-06 DOI: 10.1007/s10686-022-09870-9
Yanji Yang, Yusa Wang, Dawei Han, Juan Wang, Weiwei Cui, Yuxuan Zhu, Min Cong, Jia Ma, Zijian Zhao, Dongjie Hou, Xiongtao Yang, Can Chen, Bing Lu, He Lv, Wenxin Sun, Jiawei Zhang, Ke Yu, Shaohuai Wang, Dongxu Liu, Qian Zhang, Xiyan Bi, Fangjun Lu, Peter Friedrich, Josef Eder, Katinka Hartmann, Vadim Burwitz, Arnoud Keereman, Andrea Santovincenzo, Dervis Vernani, Giovanni Bianucci, Giuseppe Valsecch, Lizhi Sheng, Yongqing Yan, Pengfei Qiang, Bo Wang, Langping Wang, Dianlong Wang, Fei Ding, Lei Wang, Junsheng Cheng, Yong Chen
{"title":"Design and testing of the Optics for FXT onboard EP satellite","authors":"Yanji Yang,&nbsp;Yusa Wang,&nbsp;Dawei Han,&nbsp;Juan Wang,&nbsp;Weiwei Cui,&nbsp;Yuxuan Zhu,&nbsp;Min Cong,&nbsp;Jia Ma,&nbsp;Zijian Zhao,&nbsp;Dongjie Hou,&nbsp;Xiongtao Yang,&nbsp;Can Chen,&nbsp;Bing Lu,&nbsp;He Lv,&nbsp;Wenxin Sun,&nbsp;Jiawei Zhang,&nbsp;Ke Yu,&nbsp;Shaohuai Wang,&nbsp;Dongxu Liu,&nbsp;Qian Zhang,&nbsp;Xiyan Bi,&nbsp;Fangjun Lu,&nbsp;Peter Friedrich,&nbsp;Josef Eder,&nbsp;Katinka Hartmann,&nbsp;Vadim Burwitz,&nbsp;Arnoud Keereman,&nbsp;Andrea Santovincenzo,&nbsp;Dervis Vernani,&nbsp;Giovanni Bianucci,&nbsp;Giuseppe Valsecch,&nbsp;Lizhi Sheng,&nbsp;Yongqing Yan,&nbsp;Pengfei Qiang,&nbsp;Bo Wang,&nbsp;Langping Wang,&nbsp;Dianlong Wang,&nbsp;Fei Ding,&nbsp;Lei Wang,&nbsp;Junsheng Cheng,&nbsp;Yong Chen","doi":"10.1007/s10686-022-09870-9","DOIUrl":"10.1007/s10686-022-09870-9","url":null,"abstract":"<div><p>The Einstein Probe (EP) mission is a science mission designed for the time domain astronomy, which is approved by the Chinese Academy of Sciences (CAS) in 2017 and is to be launched in 2023 with a duration time of more than 3 years. The Follow-up X-ray Telescope (FXT) is an important payload onboard EP, which employs the Wolter I focusing mirror as the X-ray collection unit and the PNCCD as the focal plane detector. The Phase C study has been finished in 2021. During the Phase C, the structural and thermal model (STM) of the mirror assembly of FXT, provided by the European Space Agency (ESA), a mirror assembly developed by the Institute of High Energy Physics (IHEP), a qualification model (QM) PNCCD and other components, are integrated and tested in IHEP. All optical performances meet the goal requirement of EP, such as the field of view of 60 arcmins, the angular resolution of less than 30 arcsec HEW on-axis, and the focal length of ab. 1600 mm. After that, the FXT is assembled, integrated, and tested on the EP satellite platform. Furthermore, these performances are not changed after the mechanical and thermal tests on the spacecraft platform.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 3","pages":"625 - 637"},"PeriodicalIF":3.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09870-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4246207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
ICARUS: in-situ studies of the solar corona beyond Parker Solar Probe and Solar Orbiter 伊卡洛斯:超越帕克太阳探测器和太阳轨道器的日冕原位研究
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-02-04 DOI: 10.1007/s10686-022-09878-1
Vladimir Krasnoselskikh, Bruce T. Tsurutani, Thierry Dudok de Wit, Simon Walker, Michael Balikhin, Marianne Balat-Pichelin, Marco Velli, Stuart D. Bale, Milan Maksimovic, Oleksiy Agapitov, Wolfgang Baumjohann, Matthieu Berthomier, Roberto Bruno, Steven R. Cranmer, Bart de Pontieu, Domingos de Sousa Meneses, Jonathan Eastwood, Robertus Erdelyi, Robert Ergun, Viktor Fedun, Natalia Ganushkina, Antonella Greco, Louise Harra, Pierre Henri, Timothy Horbury, Hugh Hudson, Justin Kasper, Yuri Khotyaintsev, Matthieu Kretzschmar, Säm Krucker, Harald Kucharek, Yves Langevin, Benoît Lavraud, Jean-Pierre Lebreton, Susan Lepri, Michael Liemohn, Philippe Louarn, Eberhard Moebius, Forrest Mozer, Zdenek Nemecek, Olga Panasenco, Alessandro Retino, Jana Safrankova, Jack Scudder, Sergio Servidio, Luca Sorriso-Valvo, Jan Souček, Adam Szabo, Andris Vaivads, Grigory Vekstein, Zoltan Vörös, Teimuraz Zaqarashvili, Gaetano Zimbardo, Andrei Fedorov
{"title":"ICARUS: in-situ studies of the solar corona beyond Parker Solar Probe and Solar Orbiter","authors":"Vladimir Krasnoselskikh,&nbsp;Bruce T. Tsurutani,&nbsp;Thierry Dudok de Wit,&nbsp;Simon Walker,&nbsp;Michael Balikhin,&nbsp;Marianne Balat-Pichelin,&nbsp;Marco Velli,&nbsp;Stuart D. Bale,&nbsp;Milan Maksimovic,&nbsp;Oleksiy Agapitov,&nbsp;Wolfgang Baumjohann,&nbsp;Matthieu Berthomier,&nbsp;Roberto Bruno,&nbsp;Steven R. Cranmer,&nbsp;Bart de Pontieu,&nbsp;Domingos de Sousa Meneses,&nbsp;Jonathan Eastwood,&nbsp;Robertus Erdelyi,&nbsp;Robert Ergun,&nbsp;Viktor Fedun,&nbsp;Natalia Ganushkina,&nbsp;Antonella Greco,&nbsp;Louise Harra,&nbsp;Pierre Henri,&nbsp;Timothy Horbury,&nbsp;Hugh Hudson,&nbsp;Justin Kasper,&nbsp;Yuri Khotyaintsev,&nbsp;Matthieu Kretzschmar,&nbsp;Säm Krucker,&nbsp;Harald Kucharek,&nbsp;Yves Langevin,&nbsp;Benoît Lavraud,&nbsp;Jean-Pierre Lebreton,&nbsp;Susan Lepri,&nbsp;Michael Liemohn,&nbsp;Philippe Louarn,&nbsp;Eberhard Moebius,&nbsp;Forrest Mozer,&nbsp;Zdenek Nemecek,&nbsp;Olga Panasenco,&nbsp;Alessandro Retino,&nbsp;Jana Safrankova,&nbsp;Jack Scudder,&nbsp;Sergio Servidio,&nbsp;Luca Sorriso-Valvo,&nbsp;Jan Souček,&nbsp;Adam Szabo,&nbsp;Andris Vaivads,&nbsp;Grigory Vekstein,&nbsp;Zoltan Vörös,&nbsp;Teimuraz Zaqarashvili,&nbsp;Gaetano Zimbardo,&nbsp;Andrei Fedorov","doi":"10.1007/s10686-022-09878-1","DOIUrl":"10.1007/s10686-022-09878-1","url":null,"abstract":"<div><p>The primary scientific goal of ICARUS (Investigation of Coronal AcceleRation and heating of solar wind Up to the Sun), a mother-daughter satellite mission, proposed in response to the ESA “Voyage 2050” Call, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind, and the entire heliosphere. Reaching this goal will be a Rosetta Stone step, with results that are broadly applicable within the fields of space plasma physics and astrophysics. Within ESA’s Cosmic Vision roadmap, these science goals address Theme 2: “How does the Solar System work?” by investigating basic processes occurring “From the Sun to the edge of the Solar System”. ICARUS will not only advance our understanding of the plasma environment around our Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the first direct <i>in situ</i> measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution, and flows directly in the regions in which the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion altitude of 1 solar radius and will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow winds are generated. It will probe the local characteristics of the plasma and provide unique information about the physical processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous, contextual information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will thus provide bridges for understanding the magnetic links between the heliosphere and the solar atmosphere. Such information is crucial to our understanding of the plasma physics and electrodynamics of the solar atmosphere. ICARUS II will also play a very important relay role, enabling the radio-link with ICARUS I. It will receive, collect, and store information transmitted from ICARUS I during its closest approach to the Sun. It will also perform preliminary data processing before transmitting it to Earth. Performing such unique <i>in situ</i> observations in the area where presumably hazardous solar energetic particles are energized, ICARUS will provide fundamental advances in our capabilities to monitor and forecast the space radiation environment. Therefore, the results from the ICARUS mission will be extremely crucial for future space explorations, especially for long-term crewed space missions.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"54 2-3","pages":"277 - 315"},"PeriodicalIF":3.0,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09878-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4160280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信