Calibration of spectropolarimetry channel of visible emission line coronagraph onboard Aditya-L1

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Venkata Suresh Narra, K. Sasikumar Raja, Raghavendra Prasad B, Jagdev Singh, Shalabh Mishra, Sanal Krishnan V U, Bhavana Hegde S, Utkarsha D., Natarajan V, Pawan Kumar S, Muthu Priyal V, Savarimuthu P, Priya Gavshinde, Umesh Kamath P
{"title":"Calibration of spectropolarimetry channel of visible emission line coronagraph onboard Aditya-L1","authors":"Venkata Suresh Narra, K. Sasikumar Raja, Raghavendra Prasad B, Jagdev Singh, Shalabh Mishra, Sanal Krishnan V U, Bhavana Hegde S, Utkarsha D., Natarajan V, Pawan Kumar S, Muthu Priyal V, Savarimuthu P, Priya Gavshinde, Umesh Kamath P","doi":"10.1007/s10686-024-09954-8","DOIUrl":null,"url":null,"abstract":"<p>The magnetic field strength and its topology play an important role in understanding the formation, evolution, and dynamics of the solar corona. Also, it plays a significant role in addressing long-standing mysteries such as coronal heating problem, origin and propagation of coronal mass ejections, drivers of space weather, origin and acceleration of solar wind, and so on. Despite having photospheric magnetograms for decades, we do not have reliable observations of coronal magnetic field strengths today. To measure the coronal magnetic field precisely, the spectropolarimetry channel of the Visible Emission Line Coronagraph (VELC) on board the Aditya-L1 mission is designed. Using the observations of coronal emission line Fe XIII [10747Å ], it is possible to generate full Stokes maps (I, Q, U, and V) that help in estimating the Line-of-Sight (LOS) magnetic field strength and to derive the magnetic field topology maps of solar corona in the Field of View (FOV) (1.05 – 1.5 R<span>\\(_{\\odot }\\)</span>). In this article, we summarize the instrumental details of the spectropolarimetry channel and detailed calibration procedures adopted to derive the modulation and demodulation matrices. Furthermore, we have applied the derived demodulation matrices to the observed data in the laboratory and studied their performance.</p>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10686-024-09954-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetic field strength and its topology play an important role in understanding the formation, evolution, and dynamics of the solar corona. Also, it plays a significant role in addressing long-standing mysteries such as coronal heating problem, origin and propagation of coronal mass ejections, drivers of space weather, origin and acceleration of solar wind, and so on. Despite having photospheric magnetograms for decades, we do not have reliable observations of coronal magnetic field strengths today. To measure the coronal magnetic field precisely, the spectropolarimetry channel of the Visible Emission Line Coronagraph (VELC) on board the Aditya-L1 mission is designed. Using the observations of coronal emission line Fe XIII [10747Å ], it is possible to generate full Stokes maps (I, Q, U, and V) that help in estimating the Line-of-Sight (LOS) magnetic field strength and to derive the magnetic field topology maps of solar corona in the Field of View (FOV) (1.05 – 1.5 R\(_{\odot }\)). In this article, we summarize the instrumental details of the spectropolarimetry channel and detailed calibration procedures adopted to derive the modulation and demodulation matrices. Furthermore, we have applied the derived demodulation matrices to the observed data in the laboratory and studied their performance.

Abstract Image

校准 Aditya-L1 上可见发射线日冕仪的摄谱仪通道
磁场强度及其拓扑结构对了解日冕的形成、演变和动力学起着重要作用。此外,它在解决日冕加热问题、日冕物质抛射的起源和传播、空间天气的驱动因素、太阳风的起源和加速等长期未解之谜方面也发挥着重要作用。尽管几十年来我们一直拥有光球层磁图,但今天我们还没有可靠的日冕磁场强度观测数据。为了精确测量日冕磁场,设计了 Aditya-L1 飞行任务上的可见发射线日冕仪(VELC)的分光测极仪通道。利用对日冕发射线 Fe XIII [10747Å ]的观测,可以生成完整的斯托克斯图(I、Q、U 和 V),这有助于估算视线(LOS)磁场强度,并得出日冕在视场(FOV)(1.05 - 1.5 R\(_{\odot }\) )内的磁场拓扑图。在这篇文章中,我们总结了分光测极仪信道的仪器细节,以及为得出调制和解调矩阵而采用的详细校准程序。此外,我们还将得出的解调矩阵应用于实验室观测数据,并研究了它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Astronomy
Experimental Astronomy 地学天文-天文与天体物理
CiteScore
5.30
自引率
3.30%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments. Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields. Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信