Experimental Astronomy最新文献

筛选
英文 中文
Science filter characterization of the Solar Ultraviolet Imaging Telescope (SUIT) on board Aditya-L1. Aditya-L1上的太阳紫外线成像望远镜(SUIT)的科学滤光片特征。
IF 2.7 3区 物理与天体物理
Experimental Astronomy Pub Date : 2024-12-19 DOI: 10.1007/s10686-024-09973-5
Janmejoy Sarkar, Rushikesh Deogaonkar, Ravi Kesharwani, Sreejith Padinhatteeri, A. N. Ramaprakash, Durgesh Tripathi, Soumya Roy, Gazi A. Ahmed, Rwitika Chatterjee, Avyarthana Ghosh, Sankarasubramanian K., Aafaque Khan, Nidhi Mehandiratta, Netra Pillai, Swapnil Singh
{"title":"Science filter characterization of the Solar Ultraviolet Imaging Telescope (SUIT) on board Aditya-L1.","authors":"Janmejoy Sarkar,&nbsp;Rushikesh Deogaonkar,&nbsp;Ravi Kesharwani,&nbsp;Sreejith Padinhatteeri,&nbsp;A. N. Ramaprakash,&nbsp;Durgesh Tripathi,&nbsp;Soumya Roy,&nbsp;Gazi A. Ahmed,&nbsp;Rwitika Chatterjee,&nbsp;Avyarthana Ghosh,&nbsp;Sankarasubramanian K.,&nbsp;Aafaque Khan,&nbsp;Nidhi Mehandiratta,&nbsp;Netra Pillai,&nbsp;Swapnil Singh","doi":"10.1007/s10686-024-09973-5","DOIUrl":"10.1007/s10686-024-09973-5","url":null,"abstract":"<div><p>The Solar Ultraviolet Imaging Telescope (<i>SUIT </i>) on board the Aditya-L1 mission is designed to observe the Sun across 200–400 nm wavelength. The telescope used 16 dichroic filters tuned at specific wavelengths in various combinations to achieve its science goals. For accurate measurements and interpretation, it is important to characterize these filters for spectral variations as a function of spatial location and tilt angle. Moreover, we also measured out-of-band and in-band transmission characteristics with respect to the inband transmissions. In this paper, we present the experimental setup, test methodology, and the analyzed results. Our findings reveal that the transmission properties of all filters meet the expected performance for spatial variation of transmission and the transmission band at a specific tilt angle. The out-of-band transmission for all filters is below 1% with respect to in-band, except for filters BB01 and NB01. These results confirm the capabilities of <i>SUIT </i>to effectively capture critical solar features in the anticipated layer of the solar atmosphere.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning-based prediction approaches of binary star parameters 基于深度学习的双星参数预测方法
IF 2.7 3区 物理与天体物理
Experimental Astronomy Pub Date : 2024-12-19 DOI: 10.1007/s10686-024-09969-1
Islam Helmy, Mohamed Ismail, Doaa Eid
{"title":"Deep learning-based prediction approaches of binary star parameters","authors":"Islam Helmy,&nbsp;Mohamed Ismail,&nbsp;Doaa Eid","doi":"10.1007/s10686-024-09969-1","DOIUrl":"10.1007/s10686-024-09969-1","url":null,"abstract":"<div><p>The precise computation of binary star parameters is crucial for understanding their formation, evolution, and dynamics. However, large datasets of available astronomical measurements require substantial effort for computing using classic astronomical methods. Deep learning (DL) is a promising approach that can provide a proper solution for estimating the parameters and reducing the burden of the lengthy procedures of astronomical computations. This study proposes two DL-based models for estimating binary star parameters. The first is the well-known multi-layer perceptron (MLP) model, whereas the second is based on long short-term memory (LSTM). We rely on databases, such as large sky multi-object fiber spectroscopic telescope area (LAMOST), to train the proposed models. In addition, we verify the training ratio showing that the performance of both models at a low training ratio of <span>(30%)</span>, based on the mean square error (MSE), results in acceptable performance. Furthermore, the LSTM-based DL model outperforms the conventional MLP for different training ratios. Eventually, the two models have superiority compared to the benchmark methods.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09969-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preliminary design and development of the module back-end electronics for the large area detector onboard the eXTP mission 初步设计和开发用于 eXTP 飞行任务搭载的大面积探测器的模块后端电子设备
IF 2.7 3区 物理与天体物理
Experimental Astronomy Pub Date : 2024-12-17 DOI: 10.1007/s10686-024-09974-4
Hao Xiong, Jörg Bayer, Andrea Santangelo, Marco Feroci, Ettore Del Monte, Alejandro Guzman, Paul Hedderman, Gabriele Minervini, Samuel Pliego, Andreas Putz, Chris Tenzer, Alessio Trois, Xianqi Wang
{"title":"Preliminary design and development of the module back-end electronics for the large area detector onboard the eXTP mission","authors":"Hao Xiong,&nbsp;Jörg Bayer,&nbsp;Andrea Santangelo,&nbsp;Marco Feroci,&nbsp;Ettore Del Monte,&nbsp;Alejandro Guzman,&nbsp;Paul Hedderman,&nbsp;Gabriele Minervini,&nbsp;Samuel Pliego,&nbsp;Andreas Putz,&nbsp;Chris Tenzer,&nbsp;Alessio Trois,&nbsp;Xianqi Wang","doi":"10.1007/s10686-024-09974-4","DOIUrl":"10.1007/s10686-024-09974-4","url":null,"abstract":"<div><p>The Large Area Detector (LAD) is one of the science payloads of the enhanced X-ray Timing and Polarimetry (eXTP) mission. The LAD is a spectral-timing instrument with a broad energy response, covering a range from 2 to 30 keV, a good timing resolution of better than 10 µs, and an expected energy resolution of 260 eV at 6 keV. The LAD consists of 640 large-area multi-anode Silicon Drift Detectors (SDDs). Given the large number of detectors, the LAD uses a modular design. Each module comprises sixteen detectors, and each detector is equipped with dedicated Front-End Electronics (FEE), interfacing with two separate Module Back-End Electronics (MBEEs). Each MBEE is designed to process the data from 1,792 anode channels in 8 FEEs (224 anode channels per FEE), performing the energy reconstruction and time tagging for X-ray events. The MBEE uses the European Field Programmable Gate Array (FPGA) from NanoXplore™, based on a pipeline concept, which reduces dead time, making the LAD suitable for higher flux X-ray detection, and it can handle a sustained flux of &gt;500 mCrab and a continuous flux of &gt;15 Crab for up to 300 minutes (Feroci et al. 2018). Additionally, the MBEE serves as the central hub for configuring the module’s electronics, including the FEEs, the Power Supply Unit (PSU), and the MBEE itself, and it is also responsible for collecting housekeeping data to monitor the system’s status. The prototype MBEE was designed, manufactured, and programmed with FPGA firmware using VHDL. The basic functional test was conducted in this paper, and the results indicated that the MBEE could be operated in different modes to perform the functions mentioned above. Analysis and testing show that it can transmit event packets-containing timing tag, event type, position ID, and energy information-at a baud rate of 2 Mbps with an event loss fraction of 1.5%.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09974-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galaxy formation and symbiotic evolution with the inter-galactic medium in the age of ELT-ANDES
IF 2.7 3区 物理与天体物理
Experimental Astronomy Pub Date : 2024-12-09 DOI: 10.1007/s10686-024-09967-3
Valentina D’Odorico, James S. Bolton, Lise Christensen, Annalisa De Cia, Erik Zackrisson, Aron Kordt, Luca Izzo, Jiangtao Li, Roberto Maiolino, Alessandro Marconi, Philipp Richter, Andrea Saccardi, Stefania Salvadori, Irene Vanni, Chiara Feruglio, Michele Fumagalli, Johan P. U. Fynbo, Pasquier Noterdaeme, Polychronis Papaderos, Céline Péroux, Aprajita Verma, Paolo Di Marcantonio, Livia Origlia, Alessio Zanutta
{"title":"Galaxy formation and symbiotic evolution with the inter-galactic medium in the age of ELT-ANDES","authors":"Valentina D’Odorico,&nbsp;James S. Bolton,&nbsp;Lise Christensen,&nbsp;Annalisa De Cia,&nbsp;Erik Zackrisson,&nbsp;Aron Kordt,&nbsp;Luca Izzo,&nbsp;Jiangtao Li,&nbsp;Roberto Maiolino,&nbsp;Alessandro Marconi,&nbsp;Philipp Richter,&nbsp;Andrea Saccardi,&nbsp;Stefania Salvadori,&nbsp;Irene Vanni,&nbsp;Chiara Feruglio,&nbsp;Michele Fumagalli,&nbsp;Johan P. U. Fynbo,&nbsp;Pasquier Noterdaeme,&nbsp;Polychronis Papaderos,&nbsp;Céline Péroux,&nbsp;Aprajita Verma,&nbsp;Paolo Di Marcantonio,&nbsp;Livia Origlia,&nbsp;Alessio Zanutta","doi":"10.1007/s10686-024-09967-3","DOIUrl":"10.1007/s10686-024-09967-3","url":null,"abstract":"<div><p>High-resolution absorption spectroscopy toward bright background sources has had a paramount role in understanding early galaxy formation, the evolution of the intergalactic medium and the reionisation of the Universe. However, these studies are now approaching the boundaries of what can be achieved at ground-based 8-10m class telescopes. The identification of primeval systems at the highest redshifts, within the reionisation epoch and even into the dark ages, and of the products of the first generation of stars and the chemical enrichment of the early Universe, requires observing very faint targets with a signal-to-noise ratio high enough to detect very weak spectral signatures. In this paper, we describe the giant leap forward that will be enabled by ANDES, the high-resolution spectrograph for the ELT, in these key science fields, together with a brief, non-exhaustive overview of other extragalactic research topics that will be pursued by this instrument, and its synergistic use with other facilities that will become available in the early 2030s.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"58 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High strehl and high contrast for the ELT instrument METIS ELT 仪器 METIS 的高条纹和高对比度
IF 2.7 3区 物理与天体物理
Experimental Astronomy Pub Date : 2024-11-29 DOI: 10.1007/s10686-024-09968-2
Markus Feldt, Thomas Bertram, Carlos Correia, Olivier Absil, M. Concepción Cárdenas Vázquez, Hugo Coppejans, Martin Kulas, Andreas Obereder, Gilles Orban de Xivry, Silvia Scheithauer, Horst Steuer
{"title":"High strehl and high contrast for the ELT instrument METIS","authors":"Markus Feldt,&nbsp;Thomas Bertram,&nbsp;Carlos Correia,&nbsp;Olivier Absil,&nbsp;M. Concepción Cárdenas Vázquez,&nbsp;Hugo Coppejans,&nbsp;Martin Kulas,&nbsp;Andreas Obereder,&nbsp;Gilles Orban de Xivry,&nbsp;Silvia Scheithauer,&nbsp;Horst Steuer","doi":"10.1007/s10686-024-09968-2","DOIUrl":"10.1007/s10686-024-09968-2","url":null,"abstract":"<div><p>The Mid-infrared ELT Imager and Spectrograph (METIS) is a first-generation instrument for the Extremely Large Telescope (ELT), Europe’s next-generation 39 m ground-based telescope for optical and infrared wavelengths, which is currently under construction at the European Southern Observatory (ESO) site at Cerro Armazones in Chile. METIS will offer diffraction-limited imaging, low- and medium-resolution slit spectroscopy, and coronagraphy for high-contrast imaging between 3 and 13 microns, as well as high-resolution integral field spectroscopy between 3 and 5 microns. The main METIS science goals are the detection and characterisation of exoplanets, the investigation of proto-planetary disks, and the formation of planets. The Single-Conjugate Adaptive Optics (SCAO) system corrects atmospheric distortions and is thus essential for diffraction-limited observations with METIS. SCAO will be used for all observing modes, with high-contrast imaging imposing the most demanding requirements on its performance. The Final Design Review (FDR) of METIS took place in the fall of 2022; the development of the instrument, including its SCAO system, has since entered the Manufacturing, Assembly, Integration and Testing (MAIT) phase. Numerous challenging aspects of an ELT Adaptive Optics (AO) system are addressed in the mature designs for the SCAO control system and the SCAO hardware module: the complex interaction with the telescope entities that participate in the AO control, wavefront reconstruction with a fragmented and moving pupil, secondary control tasks to deal with differential image motion, non-common path aberrations and mis-registration. A <i>K</i>-band pyramid wavefront sensor and a GPU-based Real-Time Computer (RTC), tailored to the needs of METIS at the ELT, are core components. This current paper serves as a natural sequel to our previous work presented in Hippler et al. (2018). It reflects all the updates that were implemented between the Preliminary Design Review (PDR) and FDR, and includes updated performance estimations in terms of several key performance indicators, including achieved contrast curves. We outline all important design decisions that were taken, and present the major challenges we faced and the main analyses carried out to arrive at these decisions and eventually the final design. We also elaborate on our testing and verification strategy, and, last not least, comprehensively present the full design, hardware and software in this paper to provide a single source of reference which will remain valid at least until commissioning.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"58 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09968-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine learning method for predicting telescope cycle time applied to the Cerro Murphy Observatory 应用于 Cerro Murphy 天文台的预测望远镜周期时间的机器学习方法
IF 2.7 3区 物理与天体物理
Experimental Astronomy Pub Date : 2024-11-28 DOI: 10.1007/s10686-024-09970-8
Mirosław Kicia, Mikołaj Kałuszyński, Marek Górski, Rolf Chini, Grzegorz Pietrzyński
{"title":"A machine learning method for predicting telescope cycle time applied to the Cerro Murphy Observatory","authors":"Mirosław Kicia,&nbsp;Mikołaj Kałuszyński,&nbsp;Marek Górski,&nbsp;Rolf Chini,&nbsp;Grzegorz Pietrzyński","doi":"10.1007/s10686-024-09970-8","DOIUrl":"10.1007/s10686-024-09970-8","url":null,"abstract":"<div><p>Telescope cycle time estimation is one of the basic issues of observational astronomy. There are not many tools that help to calulate the cycle time for multiple telescopes with multiple instruments. This work presents a new tool for determing the observation time; it was applied at the Cerro Murphy Observatory (OCM) but can be used at any other observatory. The Machine Learning (ML) method was implied, resulting in a fully automatic software module that works without any user intervention. We propose a polynomial multiple regression method and demonstrate all steps to build a reliable ML model like data collecting, data cleaning, model training and error evaluation in relation to the implementation in the observatory software. The method was designed to work for different telescopes with several instruments. Accuracy analysis and the assessment of model errors were based on real data from telescopes, proving the usefulness of the presented method. Error evaluation shows that for 84.2 % of nights, the prediction error in operation time prediction does not exceed 2 %. Converted into a 10-hour observation night, 2 % corresponds to an error of no more than 12 minutes. The described model is already working at the OCM and optimizes the efficiency of the observations.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"58 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09970-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CNNCat: categorizing high-energy photons in a Compton/Pair telescope with convolutional neural networks CNNCat:利用卷积神经网络对康普顿/派尔望远镜中的高能光子进行分类
IF 2.7 3区 物理与天体物理
Experimental Astronomy Pub Date : 2024-11-04 DOI: 10.1007/s10686-024-09965-5
Jan Peter Lommler, Uwe Gerd Oberlack
{"title":"CNNCat: categorizing high-energy photons in a Compton/Pair telescope with convolutional neural networks","authors":"Jan Peter Lommler,&nbsp;Uwe Gerd Oberlack","doi":"10.1007/s10686-024-09965-5","DOIUrl":"10.1007/s10686-024-09965-5","url":null,"abstract":"<div><p>A Compton/Pair telescope, designed to provide spectral resolved images of cosmic photons from sub-MeV to GeV energies, records a wealth of data in a combination of tracking detector and calorimeter. Onboard event classification can be required to decide on which data to down-link with priority, given limited data-transfer bandwidth. Event classification is also the first and one of the most crucial steps in reconstructing data. Its outcome determines the further handling of the event, i.e., the type of reconstruction (Compton, pair) or, possibly, the decision to discard it. Errors at this stage result in misreconstruction and loss of source information. We present a classification algorithm driven by a Convolutional Neural Network. It provides classification of the type of electromagnetic interaction, based solely on low-level detector data. We introduce the task, describe the architecture and the dataset used, and present the performance of this method in the context of the proposed (e-)ASTROGAM and similar telescopes.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"58 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09965-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reflectivity test method of x-ray optics at the 100-m x-ray test facility 100 米 X 射线测试设备的 X 射线光学器件反射率测试方法
IF 2.7 3区 物理与天体物理
Experimental Astronomy Pub Date : 2024-11-01 DOI: 10.1007/s10686-024-09964-6
Yuxuan Zhu, Zijian Zhao, Dongjie Hou, Yanji Yang, Xiongtao Yang, Yifan Zhang, Kaiji Wu, Fei Ding, Dong Xie, Yupeng Xu, Bo Wang, Langping Wang, Yusa Wang
{"title":"Reflectivity test method of x-ray optics at the 100-m x-ray test facility","authors":"Yuxuan Zhu,&nbsp;Zijian Zhao,&nbsp;Dongjie Hou,&nbsp;Yanji Yang,&nbsp;Xiongtao Yang,&nbsp;Yifan Zhang,&nbsp;Kaiji Wu,&nbsp;Fei Ding,&nbsp;Dong Xie,&nbsp;Yupeng Xu,&nbsp;Bo Wang,&nbsp;Langping Wang,&nbsp;Yusa Wang","doi":"10.1007/s10686-024-09964-6","DOIUrl":"10.1007/s10686-024-09964-6","url":null,"abstract":"<div><p>Reflectivity is a key topic in soft X-ray optics research and serves as the foundation for studying the performance of the optics for X-ray astronomical satellites. Since its establishment, the 100-m X-ray Test Facility (100XF) has been continuously developing various testing functionalities, including calibration of timing, imaging, and energy response. This paper provides a detailed description of the X-ray optics reflectivity test method based on the 100XF, which can be applied to various grazing incident X-ray optics, including Wolter-I and lobster-eye types, significantly expanding the application scope of the 100XF. A flat mirror sample (SiO<span>(_{text{2 }})</span> coated on a Si wafer) is tested. Results of the variation of reflectivity with angle @ C-K<span>(alpha )</span> (0.28 keV), Al-K<span>(alpha )</span>(1.49 keV), and Ti-K<span>(alpha )</span>(4.50 keV) are presented in the description. The reflectivity test method has also been applied to the coating reflectivity study of the enhanced X-ray Timing and Polarimetry Mission (eXTP) mirror. At the same time, a new method utilizing the continuum spectrum of bremsstrahlung was carried out to study the continuous variation of reflectivity with energy, greatly improving efficiency compared to traditional methods, and all the results show a good agreement with the theoretical values. The deviation between the test and theoretical values in the low-energy range (1.5-8.0 keV) is less than 10%.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"58 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ground calibration and network of the first CATCH pathfinder 第一个 CATCH 探路者的地面校准和网络
IF 2.7 3区 物理与天体物理
Experimental Astronomy Pub Date : 2024-10-31 DOI: 10.1007/s10686-024-09963-7
Yiming Huang, Jingyu Xiao, Lian Tao, Shuang-Nan Zhang, Qian-Qing Yin, Yusa Wang, Zijian Zhao, Chen Zhang, Qingchang Zhao, Xiang Ma, Shujie Zhao, Heng Zhou, Xiangyang Wen, Zhengwei Li, Shaolin Xiong, Juan Zhang, Qingcui Bu, Jirong Cang, Dezhi Cao, Wen Chen, Siran Ding, Yanfeng Dai, Min Gao, Yang Gao, Huilin He, Shujin Hou, Dongjie Hou, Tai Hu, Guoli Huang, Yue Huang, Liping Jia, Ge Jin, Dalin Li, Jinsong Li, Panping Li, Yajun Li, Xiaojing Liu, Ruican Ma, Lingling Men, Xingyu Pan, Liqiang Qi, Liming Song, Xianfei Sun, Qingwen Tang, Liyuan Xiong, Yibo Xu, Sheng Yang, Yanji Yang, Yong Yang, Aimei Zhang, Wei Zhang, Yifan Zhang, Yueting Zhang, Donghua Zhao, Kang Zhao, Yuxuan Zhu
{"title":"Ground calibration and network of the first CATCH pathfinder","authors":"Yiming Huang,&nbsp;Jingyu Xiao,&nbsp;Lian Tao,&nbsp;Shuang-Nan Zhang,&nbsp;Qian-Qing Yin,&nbsp;Yusa Wang,&nbsp;Zijian Zhao,&nbsp;Chen Zhang,&nbsp;Qingchang Zhao,&nbsp;Xiang Ma,&nbsp;Shujie Zhao,&nbsp;Heng Zhou,&nbsp;Xiangyang Wen,&nbsp;Zhengwei Li,&nbsp;Shaolin Xiong,&nbsp;Juan Zhang,&nbsp;Qingcui Bu,&nbsp;Jirong Cang,&nbsp;Dezhi Cao,&nbsp;Wen Chen,&nbsp;Siran Ding,&nbsp;Yanfeng Dai,&nbsp;Min Gao,&nbsp;Yang Gao,&nbsp;Huilin He,&nbsp;Shujin Hou,&nbsp;Dongjie Hou,&nbsp;Tai Hu,&nbsp;Guoli Huang,&nbsp;Yue Huang,&nbsp;Liping Jia,&nbsp;Ge Jin,&nbsp;Dalin Li,&nbsp;Jinsong Li,&nbsp;Panping Li,&nbsp;Yajun Li,&nbsp;Xiaojing Liu,&nbsp;Ruican Ma,&nbsp;Lingling Men,&nbsp;Xingyu Pan,&nbsp;Liqiang Qi,&nbsp;Liming Song,&nbsp;Xianfei Sun,&nbsp;Qingwen Tang,&nbsp;Liyuan Xiong,&nbsp;Yibo Xu,&nbsp;Sheng Yang,&nbsp;Yanji Yang,&nbsp;Yong Yang,&nbsp;Aimei Zhang,&nbsp;Wei Zhang,&nbsp;Yifan Zhang,&nbsp;Yueting Zhang,&nbsp;Donghua Zhao,&nbsp;Kang Zhao,&nbsp;Yuxuan Zhu","doi":"10.1007/s10686-024-09963-7","DOIUrl":"10.1007/s10686-024-09963-7","url":null,"abstract":"<div><p>The Chasing All Transients Constellation Hunters (CATCH) space mission is focused on exploring the dynamic universe via X-ray follow-up observations of various transients. The first pathfinder of the CATCH mission, CATCH-1, was launched on June 22, 2024, alongside the Space-based multiband astronomical Variable Objects Monitor (SVOM) mission. CATCH-1 is equipped with narrow-field optimized Micro Pore Optics (MPOs) featuring a large effective area and incorporates four Silicon Drift Detectors (SDDs) in its focal plane. This paper presents the system calibration results conducted before the satellite integration. Utilizing the data on the performance of the mirror and detectors obtained through the system calibration, combined with simulated data, the ground calibration database can be established. Measuring the relative positions of the mirror and detector system, which were adjusted during system calibration, allows for accurate installation of the entire satellite. Furthermore, the paper outlines the operational workflow of the ground network post-satellite launch.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"58 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulations and machine learning models for cosmic-ray short-term variations and test-mass charging on board LISA 宇宙射线短期变化模拟和机器学习模型以及 LISA 上的测试质量充电
IF 2.7 3区 物理与天体物理
Experimental Astronomy Pub Date : 2024-10-30 DOI: 10.1007/s10686-024-09962-8
Mattia Villani, Federico Sabbatini, Andrea Cesarini, Michele Fabi, Catia Grimani
{"title":"Simulations and machine learning models for cosmic-ray short-term variations and test-mass charging on board LISA","authors":"Mattia Villani,&nbsp;Federico Sabbatini,&nbsp;Andrea Cesarini,&nbsp;Michele Fabi,&nbsp;Catia Grimani","doi":"10.1007/s10686-024-09962-8","DOIUrl":"10.1007/s10686-024-09962-8","url":null,"abstract":"<div><p>Energetic particles of galactic and solar origin charge the metal free-falling test masses (TMs) of the interferometers for gravitational wave detection in space. The deposited charge couples with stray electric fields thus generating spurious Coulomb forces between the TMs and the electrode housing that limit the interferometer sensitivity. Long-term and short-term galactic cosmic-ray variations are strongly energy-dependent and the TM charging varies with particle energy distribution. We propose three different approaches involving Monte Carlo simulations and machine learning models in comparison to particle transport with the Parker equation to study the recurrent modulation of energy spectra of galactic particles ascribable to the passage of high-speed solar wind streams. The transit of interplanetary counterparts of coronal mass ejections modifies the effects of high-speed streams. This work aims at better understanding the energy-dependence of galactic cosmic-ray short-term variations for the Laser Interferometer Space Antenna (LISA), the first interferometer for gravitational wave detection in space, starting from lessons learned with LISA Pathfinder. The outcomes of our models will be used to assess the TM charging during the time LISA will remain in orbit around the Sun.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"58 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信