Experimental Astronomy最新文献

筛选
英文 中文
Design and performance of the focal plane camera for FXT onboard the Einstein Probe satellite 爱因斯坦探测卫星FXT焦平面相机的设计与性能
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-02-23 DOI: 10.1007/s10686-023-09891-y
Weiwei Cui, Hao Wang, Xiaofan Zhao, Juan Zhang, Norbert Meidinger, Yanji Yang, Isabell Keil, Ziliang Zhang, Jia Huo, Juan Wang, Zeyu Song, Fangjun Lu, Jia Ma, Yusa Wang, Jingjing Xu, Yuxuan Zhu, Tianming Li, Wei Li, Laidan Luo, Dawei Han, Zijian Zhao, Dongjie Hou, Xiongtao Yang, Haoyang Geng, Shuo Li, HouLei Chen, QingJun Tang, Yehai Chen, Yong Chen
{"title":"Design and performance of the focal plane camera for FXT onboard the Einstein Probe satellite","authors":"Weiwei Cui,&nbsp;Hao Wang,&nbsp;Xiaofan Zhao,&nbsp;Juan Zhang,&nbsp;Norbert Meidinger,&nbsp;Yanji Yang,&nbsp;Isabell Keil,&nbsp;Ziliang Zhang,&nbsp;Jia Huo,&nbsp;Juan Wang,&nbsp;Zeyu Song,&nbsp;Fangjun Lu,&nbsp;Jia Ma,&nbsp;Yusa Wang,&nbsp;Jingjing Xu,&nbsp;Yuxuan Zhu,&nbsp;Tianming Li,&nbsp;Wei Li,&nbsp;Laidan Luo,&nbsp;Dawei Han,&nbsp;Zijian Zhao,&nbsp;Dongjie Hou,&nbsp;Xiongtao Yang,&nbsp;Haoyang Geng,&nbsp;Shuo Li,&nbsp;HouLei Chen,&nbsp;QingJun Tang,&nbsp;Yehai Chen,&nbsp;Yong Chen","doi":"10.1007/s10686-023-09891-y","DOIUrl":"10.1007/s10686-023-09891-y","url":null,"abstract":"<div><p>The Einstein Probe (EP) satellite is designed for X-ray time-domain astronomy. The Follow-up X-ray Telescope (FXT) is one of the scientific payloads onboard EP. It will mainly be used for the follow-up X-ray observation, and it will also be used for the sky survey and Target of Opportunity (ToO) observation. The focal plane detector of FXT provided by the Max Planck Institute for Extraterrestrial Physics (MPE) adopts a PNCCD sensor. For detector cooling, a helium pulse tube refrigerator is used, provided by the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS), to keep the detector working at a temperature of −90 ± 0.5 °C. The PNCCD driving and data acquisition electronics are developed by the Institute of High Energy Physics (IHEP), CAS. To observe different celestial sources, we designed six filter wheel positions and three scientific operating modes for the PNCCD detector: the full-frame mode, the partial-window mode, and the timing mode. In the full-frame mode, the system frame rate is 20 frame/s and the energy resolution of the whole system reaches 92 eV @ 1.49 keV (FWHM). The frame rate of partial-window mode is 500 frame/s. In the timing mode, the time resolution is about 94 μs. This paper mainly introduces the design and test results of the focal plane camera.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 3","pages":"603 - 624"},"PeriodicalIF":3.0,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09891-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5195772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Performance of the polarization leakage correction in the PILOT data 偏振泄漏校正在PILOT数据中的性能
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-02-13 DOI: 10.1007/s10686-022-09882-5
Jean-Philippe Bernard, Adam Bernard, Hélène Roussel, Ilyes Choubani, Dana Alina, Jonathan Aumont, Annie Hughes, Isabelle Ristorcelli, Samantha Stever, Tomotake Matsumura, Shinya Sugiyama, Kunimoto Komatsu, Giancarlo de Gasperis, Katia Ferrière, Vincent Guillet, Nathalie Ysard, Peter Ade, Paolo de Bernardis, Nicolas Bray, Bruno Crane, Jean-Pierre Dubois, Matt Griffin, Peter Hargrave, Yuying Longval, Stephane Louvel, Bruno Maffei, Silvia Masi, Baptiste Mot, Johan Montel, François Pajot, Etienne Pérot, Nicolas Ponthieu, Louis Rodriguez, Valentin Sauvage, Giorgio Savini, Carole Tucker, François Vacher
{"title":"Performance of the polarization leakage correction in the PILOT data","authors":"Jean-Philippe Bernard,&nbsp;Adam Bernard,&nbsp;Hélène Roussel,&nbsp;Ilyes Choubani,&nbsp;Dana Alina,&nbsp;Jonathan Aumont,&nbsp;Annie Hughes,&nbsp;Isabelle Ristorcelli,&nbsp;Samantha Stever,&nbsp;Tomotake Matsumura,&nbsp;Shinya Sugiyama,&nbsp;Kunimoto Komatsu,&nbsp;Giancarlo de Gasperis,&nbsp;Katia Ferrière,&nbsp;Vincent Guillet,&nbsp;Nathalie Ysard,&nbsp;Peter Ade,&nbsp;Paolo de Bernardis,&nbsp;Nicolas Bray,&nbsp;Bruno Crane,&nbsp;Jean-Pierre Dubois,&nbsp;Matt Griffin,&nbsp;Peter Hargrave,&nbsp;Yuying Longval,&nbsp;Stephane Louvel,&nbsp;Bruno Maffei,&nbsp;Silvia Masi,&nbsp;Baptiste Mot,&nbsp;Johan Montel,&nbsp;François Pajot,&nbsp;Etienne Pérot,&nbsp;Nicolas Ponthieu,&nbsp;Louis Rodriguez,&nbsp;Valentin Sauvage,&nbsp;Giorgio Savini,&nbsp;Carole Tucker,&nbsp;François Vacher","doi":"10.1007/s10686-022-09882-5","DOIUrl":"10.1007/s10686-022-09882-5","url":null,"abstract":"<div><p>The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (<i>PILOT</i>) is a balloon-borne experiment that aims to measure the polarized emission of thermal dust at a wavelength of 240µm (1.2 THz). The <i>PILOT</i> experiment flew from Timmins, Ontario, Canada in 2015 and 2019 and from Alice Springs, Australia in April 2017. The in-flight performance of the instrument during the second flight was described in [1]. In this paper, we present data processing steps that were not presented in [1] and that we have recently implemented to correct for several remaining instrumental effects. The additional data processing concerns corrections related to detector cross-talk and readout circuit memory effects, and leakage from total intensity to polarization. We illustrate the above effects and the performance of our corrections using data obtained during the third flight of <i>PILOT</i>, but the methods used to assess the impact of these effects on the final science-ready data, and our strategies for correcting them will be applied to all <i>PILOT</i> data. We show that the above corrections, and in particular that for the intensity to polarization leakage, which is most critical for accurate polarization measurements with <i>PILOT</i>, are accurate to better than 0.4% as measured on Jupiter during flight#3.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"197 - 222"},"PeriodicalIF":3.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4536468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and testing of the Optics for FXT onboard EP satellite EP卫星FXT光学系统的设计与测试
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-02-06 DOI: 10.1007/s10686-022-09870-9
Yanji Yang, Yusa Wang, Dawei Han, Juan Wang, Weiwei Cui, Yuxuan Zhu, Min Cong, Jia Ma, Zijian Zhao, Dongjie Hou, Xiongtao Yang, Can Chen, Bing Lu, He Lv, Wenxin Sun, Jiawei Zhang, Ke Yu, Shaohuai Wang, Dongxu Liu, Qian Zhang, Xiyan Bi, Fangjun Lu, Peter Friedrich, Josef Eder, Katinka Hartmann, Vadim Burwitz, Arnoud Keereman, Andrea Santovincenzo, Dervis Vernani, Giovanni Bianucci, Giuseppe Valsecch, Lizhi Sheng, Yongqing Yan, Pengfei Qiang, Bo Wang, Langping Wang, Dianlong Wang, Fei Ding, Lei Wang, Junsheng Cheng, Yong Chen
{"title":"Design and testing of the Optics for FXT onboard EP satellite","authors":"Yanji Yang,&nbsp;Yusa Wang,&nbsp;Dawei Han,&nbsp;Juan Wang,&nbsp;Weiwei Cui,&nbsp;Yuxuan Zhu,&nbsp;Min Cong,&nbsp;Jia Ma,&nbsp;Zijian Zhao,&nbsp;Dongjie Hou,&nbsp;Xiongtao Yang,&nbsp;Can Chen,&nbsp;Bing Lu,&nbsp;He Lv,&nbsp;Wenxin Sun,&nbsp;Jiawei Zhang,&nbsp;Ke Yu,&nbsp;Shaohuai Wang,&nbsp;Dongxu Liu,&nbsp;Qian Zhang,&nbsp;Xiyan Bi,&nbsp;Fangjun Lu,&nbsp;Peter Friedrich,&nbsp;Josef Eder,&nbsp;Katinka Hartmann,&nbsp;Vadim Burwitz,&nbsp;Arnoud Keereman,&nbsp;Andrea Santovincenzo,&nbsp;Dervis Vernani,&nbsp;Giovanni Bianucci,&nbsp;Giuseppe Valsecch,&nbsp;Lizhi Sheng,&nbsp;Yongqing Yan,&nbsp;Pengfei Qiang,&nbsp;Bo Wang,&nbsp;Langping Wang,&nbsp;Dianlong Wang,&nbsp;Fei Ding,&nbsp;Lei Wang,&nbsp;Junsheng Cheng,&nbsp;Yong Chen","doi":"10.1007/s10686-022-09870-9","DOIUrl":"10.1007/s10686-022-09870-9","url":null,"abstract":"<div><p>The Einstein Probe (EP) mission is a science mission designed for the time domain astronomy, which is approved by the Chinese Academy of Sciences (CAS) in 2017 and is to be launched in 2023 with a duration time of more than 3 years. The Follow-up X-ray Telescope (FXT) is an important payload onboard EP, which employs the Wolter I focusing mirror as the X-ray collection unit and the PNCCD as the focal plane detector. The Phase C study has been finished in 2021. During the Phase C, the structural and thermal model (STM) of the mirror assembly of FXT, provided by the European Space Agency (ESA), a mirror assembly developed by the Institute of High Energy Physics (IHEP), a qualification model (QM) PNCCD and other components, are integrated and tested in IHEP. All optical performances meet the goal requirement of EP, such as the field of view of 60 arcmins, the angular resolution of less than 30 arcsec HEW on-axis, and the focal length of ab. 1600 mm. After that, the FXT is assembled, integrated, and tested on the EP satellite platform. Furthermore, these performances are not changed after the mechanical and thermal tests on the spacecraft platform.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 3","pages":"625 - 637"},"PeriodicalIF":3.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09870-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4246207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
ICARUS: in-situ studies of the solar corona beyond Parker Solar Probe and Solar Orbiter 伊卡洛斯:超越帕克太阳探测器和太阳轨道器的日冕原位研究
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-02-04 DOI: 10.1007/s10686-022-09878-1
Vladimir Krasnoselskikh, Bruce T. Tsurutani, Thierry Dudok de Wit, Simon Walker, Michael Balikhin, Marianne Balat-Pichelin, Marco Velli, Stuart D. Bale, Milan Maksimovic, Oleksiy Agapitov, Wolfgang Baumjohann, Matthieu Berthomier, Roberto Bruno, Steven R. Cranmer, Bart de Pontieu, Domingos de Sousa Meneses, Jonathan Eastwood, Robertus Erdelyi, Robert Ergun, Viktor Fedun, Natalia Ganushkina, Antonella Greco, Louise Harra, Pierre Henri, Timothy Horbury, Hugh Hudson, Justin Kasper, Yuri Khotyaintsev, Matthieu Kretzschmar, Säm Krucker, Harald Kucharek, Yves Langevin, Benoît Lavraud, Jean-Pierre Lebreton, Susan Lepri, Michael Liemohn, Philippe Louarn, Eberhard Moebius, Forrest Mozer, Zdenek Nemecek, Olga Panasenco, Alessandro Retino, Jana Safrankova, Jack Scudder, Sergio Servidio, Luca Sorriso-Valvo, Jan Souček, Adam Szabo, Andris Vaivads, Grigory Vekstein, Zoltan Vörös, Teimuraz Zaqarashvili, Gaetano Zimbardo, Andrei Fedorov
{"title":"ICARUS: in-situ studies of the solar corona beyond Parker Solar Probe and Solar Orbiter","authors":"Vladimir Krasnoselskikh,&nbsp;Bruce T. Tsurutani,&nbsp;Thierry Dudok de Wit,&nbsp;Simon Walker,&nbsp;Michael Balikhin,&nbsp;Marianne Balat-Pichelin,&nbsp;Marco Velli,&nbsp;Stuart D. Bale,&nbsp;Milan Maksimovic,&nbsp;Oleksiy Agapitov,&nbsp;Wolfgang Baumjohann,&nbsp;Matthieu Berthomier,&nbsp;Roberto Bruno,&nbsp;Steven R. Cranmer,&nbsp;Bart de Pontieu,&nbsp;Domingos de Sousa Meneses,&nbsp;Jonathan Eastwood,&nbsp;Robertus Erdelyi,&nbsp;Robert Ergun,&nbsp;Viktor Fedun,&nbsp;Natalia Ganushkina,&nbsp;Antonella Greco,&nbsp;Louise Harra,&nbsp;Pierre Henri,&nbsp;Timothy Horbury,&nbsp;Hugh Hudson,&nbsp;Justin Kasper,&nbsp;Yuri Khotyaintsev,&nbsp;Matthieu Kretzschmar,&nbsp;Säm Krucker,&nbsp;Harald Kucharek,&nbsp;Yves Langevin,&nbsp;Benoît Lavraud,&nbsp;Jean-Pierre Lebreton,&nbsp;Susan Lepri,&nbsp;Michael Liemohn,&nbsp;Philippe Louarn,&nbsp;Eberhard Moebius,&nbsp;Forrest Mozer,&nbsp;Zdenek Nemecek,&nbsp;Olga Panasenco,&nbsp;Alessandro Retino,&nbsp;Jana Safrankova,&nbsp;Jack Scudder,&nbsp;Sergio Servidio,&nbsp;Luca Sorriso-Valvo,&nbsp;Jan Souček,&nbsp;Adam Szabo,&nbsp;Andris Vaivads,&nbsp;Grigory Vekstein,&nbsp;Zoltan Vörös,&nbsp;Teimuraz Zaqarashvili,&nbsp;Gaetano Zimbardo,&nbsp;Andrei Fedorov","doi":"10.1007/s10686-022-09878-1","DOIUrl":"10.1007/s10686-022-09878-1","url":null,"abstract":"<div><p>The primary scientific goal of ICARUS (Investigation of Coronal AcceleRation and heating of solar wind Up to the Sun), a mother-daughter satellite mission, proposed in response to the ESA “Voyage 2050” Call, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind, and the entire heliosphere. Reaching this goal will be a Rosetta Stone step, with results that are broadly applicable within the fields of space plasma physics and astrophysics. Within ESA’s Cosmic Vision roadmap, these science goals address Theme 2: “How does the Solar System work?” by investigating basic processes occurring “From the Sun to the edge of the Solar System”. ICARUS will not only advance our understanding of the plasma environment around our Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the first direct <i>in situ</i> measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution, and flows directly in the regions in which the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion altitude of 1 solar radius and will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow winds are generated. It will probe the local characteristics of the plasma and provide unique information about the physical processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous, contextual information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will thus provide bridges for understanding the magnetic links between the heliosphere and the solar atmosphere. Such information is crucial to our understanding of the plasma physics and electrodynamics of the solar atmosphere. ICARUS II will also play a very important relay role, enabling the radio-link with ICARUS I. It will receive, collect, and store information transmitted from ICARUS I during its closest approach to the Sun. It will also perform preliminary data processing before transmitting it to Earth. Performing such unique <i>in situ</i> observations in the area where presumably hazardous solar energetic particles are energized, ICARUS will provide fundamental advances in our capabilities to monitor and forecast the space radiation environment. Therefore, the results from the ICARUS mission will be extremely crucial for future space explorations, especially for long-term crewed space missions.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"54 2-3","pages":"277 - 315"},"PeriodicalIF":3.0,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09878-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4160280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The scientific performance of the microchannel X-ray telescope on board the SVOM mission SVOM任务上的微通道x射线望远镜的科学性能
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-02-01 DOI: 10.1007/s10686-022-09881-6
D. Götz, M. Boutelier, V. Burwitz, R. Chipaux, B. Cordier, C. Feldman, P. Ferrando, A. Fort, F. Gonzalez, A. Gros, S. Hussein, J.-M. Le Duigou, N. Meidinger, K. Mercier, A. Meuris, J. Pearson, N. Renault-Tinacci, F. Robinet, B. Schneider, R. Willingale
{"title":"The scientific performance of the microchannel X-ray telescope on board the SVOM mission","authors":"D. Götz,&nbsp;M. Boutelier,&nbsp;V. Burwitz,&nbsp;R. Chipaux,&nbsp;B. Cordier,&nbsp;C. Feldman,&nbsp;P. Ferrando,&nbsp;A. Fort,&nbsp;F. Gonzalez,&nbsp;A. Gros,&nbsp;S. Hussein,&nbsp;J.-M. Le Duigou,&nbsp;N. Meidinger,&nbsp;K. Mercier,&nbsp;A. Meuris,&nbsp;J. Pearson,&nbsp;N. Renault-Tinacci,&nbsp;F. Robinet,&nbsp;B. Schneider,&nbsp;R. Willingale","doi":"10.1007/s10686-022-09881-6","DOIUrl":"10.1007/s10686-022-09881-6","url":null,"abstract":"<div><p>The Microchannel X-ray Telescope (MXT) will be the first focusing X-ray telescope based on a narrow field “Lobster-Eye” optical design to be flown on a satellite, namely the Sino-French mission SVOM. SVOM will be dedicated to the study of Gamma-Ray Bursts and more generally time-domain astrophysics. The MXT telescope is a compact (focal length <span>(sim )</span> 1.15 m) and light (&lt; 42 kg) instrument, sensitive in the 0.2–10 keV energy range. It is composed of an optical system, based on micro-pore optics (MPOs) of 40 <i>μ</i> m pore size, coupled to a low-noise pnCDD X-ray detector. In this paper we describe the expected scientific performance of the MXT telescope, based on the End-to-End calibration campaign performed in fall 2021, before the integration of the SVOM payload on the satellite.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 2","pages":"487 - 519"},"PeriodicalIF":3.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09881-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4022528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The structural design and thermo-mechanical performance of the FXT for the EP mission 用于EP任务的FXT的结构设计和热机械性能
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-02-01 DOI: 10.1007/s10686-023-09889-6
Juan Wang, Josef Eder, Jia Ma, YanJi Yang, WeiWei Cui, XiongTao Yang, XuLiang Duan, JianChao Feng, XiaoFeng Zhang, Bing Lu, He Lv, WenXin Sun, FangJun Lu, DaWei Han, YuSa Wang, Tianxiang Chen, Qian Zhang, Xiyan Bi, DongTai Li, JiaWei Zhang, Peter Friedrich, Katinka Hartmann, Arnoud Keereman, Andrea Santovincenzo, Dervis Vernani, Giovanni Bianucci, Giuseppe Valsecchi, QingJun Tang, HouLei Chen, Yong Chen
{"title":"The structural design and thermo-mechanical performance of the FXT for the EP mission","authors":"Juan Wang,&nbsp;Josef Eder,&nbsp;Jia Ma,&nbsp;YanJi Yang,&nbsp;WeiWei Cui,&nbsp;XiongTao Yang,&nbsp;XuLiang Duan,&nbsp;JianChao Feng,&nbsp;XiaoFeng Zhang,&nbsp;Bing Lu,&nbsp;He Lv,&nbsp;WenXin Sun,&nbsp;FangJun Lu,&nbsp;DaWei Han,&nbsp;YuSa Wang,&nbsp;Tianxiang Chen,&nbsp;Qian Zhang,&nbsp;Xiyan Bi,&nbsp;DongTai Li,&nbsp;JiaWei Zhang,&nbsp;Peter Friedrich,&nbsp;Katinka Hartmann,&nbsp;Arnoud Keereman,&nbsp;Andrea Santovincenzo,&nbsp;Dervis Vernani,&nbsp;Giovanni Bianucci,&nbsp;Giuseppe Valsecchi,&nbsp;QingJun Tang,&nbsp;HouLei Chen,&nbsp;Yong Chen","doi":"10.1007/s10686-023-09889-6","DOIUrl":"10.1007/s10686-023-09889-6","url":null,"abstract":"<div><p>The Follow-up X-ray Telescope (FXT) is one of the key payloads onboard EP. It is a Wolter-I type X-ray focusing telescope equipped with two telescope modules (focal length 1.6 m), with a total effective area of ~ 600 cm2 at 1.25 keV and an energy range of 0.3–10 keV. FXT is mainly composed of an X-ray focusing mirror assembly (MA) and a camera assembly with a PNCCD detector module. The two FXT modules are completely independent from each other, thus avoiding a single point failure. We completed the internal composites of FXT structural design, which meets the function and performance requirements of mechanical, thermal, contamination control and X-ray optics. The FXT passed successfully the mechanical, thermal qualification level tests on the spacecraft platform in the phase C.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 3","pages":"639 - 659"},"PeriodicalIF":3.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09889-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4022527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Ultra-low-frequency radio astronomy observations from a Seleno-centric orbit 以硒为中心轨道的超低频率射电天文观测
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-01-27 DOI: 10.1007/s10686-022-09887-0
Jingye Yan, Ji Wu, Leonid I. Gurvits, Lin Wu, Li Deng, Fei Zhao, Li Zhou, Ailan Lan, Wenjie Fan, Min Yi, Yang Yang, Zhen Yang, Mingchuan Wei, Jinsheng Guo, Shi Qiu, Fan Wu, Chaoran Hu, Xuelei Chen, Hanna Rothkaehl, Marek Morawski
{"title":"Ultra-low-frequency radio astronomy observations from a Seleno-centric orbit","authors":"Jingye Yan,&nbsp;Ji Wu,&nbsp;Leonid I. Gurvits,&nbsp;Lin Wu,&nbsp;Li Deng,&nbsp;Fei Zhao,&nbsp;Li Zhou,&nbsp;Ailan Lan,&nbsp;Wenjie Fan,&nbsp;Min Yi,&nbsp;Yang Yang,&nbsp;Zhen Yang,&nbsp;Mingchuan Wei,&nbsp;Jinsheng Guo,&nbsp;Shi Qiu,&nbsp;Fan Wu,&nbsp;Chaoran Hu,&nbsp;Xuelei Chen,&nbsp;Hanna Rothkaehl,&nbsp;Marek Morawski","doi":"10.1007/s10686-022-09887-0","DOIUrl":"10.1007/s10686-022-09887-0","url":null,"abstract":"<div><p>This paper introduces the first results of observations with the Ultra-Long-Wavelength (ULW) —- Low Frequency Interferometer and Spectrometer (LFIS) on board the selenocentric satellite <i>Longjiang-2</i>. We present a brief description of the satellite and focus on the LFIS payload. The in-orbit commissioning confirmed a reliable operational status of the instrumentation. We also present results of a transition observation, which offers unique measurements on several novel aspects. We estimate the RFI suppression required for such a radio astronomy instrumentation at the Moon-distances from Earth as order of − 80 dB. We analyse a method of separating Earth- and satellite-originated radio frequency interference (RFI). It is found that the RFI level at frequencies lower than a few MHz is smaller than the receiver noise floor.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"333 - 353"},"PeriodicalIF":3.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5039693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase 雅典娜x射线集成现场单元:初步定义阶段系统需求审查的统一设计
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-01-27 DOI: 10.1007/s10686-022-09880-7
Didier Barret, Vincent Albouys, Jan-Willem den Herder, Luigi Piro, Massimo Cappi, Juhani Huovelin, Richard Kelley, J. Miguel Mas-Hesse, Stéphane Paltani, Gregor Rauw, Agata Rozanska, Jiri Svoboda, Joern Wilms, Noriko Yamasaki, Marc Audard, Simon Bandler, Marco Barbera, Xavier Barcons, Enrico Bozzo, Maria Teresa Ceballos, Ivan Charles, Elisa Costantini, Thomas Dauser, Anne Decourchelle, Lionel Duband, Jean-Marc Duval, Fabrizio Fiore, Flavio Gatti, Andrea Goldwurm, Roland den Hartog, Brian Jackson, Peter Jonker, Caroline Kilbourne, Seppo Korpela, Claudio Macculi, Mariano Mendez, Kazuhisa Mitsuda, Silvano Molendi, François Pajot, Etienne Pointecouteau, Frederick Porter, Gabriel W. Pratt, Damien Prêle, Laurent Ravera, Kosuke Sato, Joop Schaye, Keisuke Shinozaki, Konrad Skup, Jan Soucek, Tanguy Thibert, Jacco Vink, Natalie Webb, Laurence Chaoul, Desi Raulin, Aurora Simionescu, Jose Miguel Torrejon, Fabio Acero, Graziella Branduardi-Raymont, Stefano Ettori, Alexis Finoguenov, Nicolas Grosso, Jelle Kaastra, Pasquale Mazzotta, Jon Miller, Giovanni Miniutti, Fabrizio Nicastro, Salvatore Sciortino, Hiroya Yamaguchi, Sophie Beaumont, Edoardo Cucchetti, Matteo D’Andrea, Megan Eckart, Philippe Ferrando, Elias Kammoun, Simone Lotti, Jean-Michel Mesnager, Lorenzo Natalucci, Philippe Peille, Jelle de Plaa, Florence Ardellier, Andrea Argan, Elise Bellouard, Jérôme Carron, Elisabetta Cavazzuti, Mauro Fiorini, Pourya Khosropanah, Sylvain Martin, James Perry, Frederic Pinsard, Alice Pradines, Manuela Rigano, Peter Roelfsema, Denis Schwander, Guido Torrioli, Joel Ullom, Isabel Vera, Eduardo Medinaceli Villegas, Monika Zuchniak, Frank Brachet, Ugo Lo Cicero, William Doriese, Malcom Durkin, Valentina Fioretti, Hervé Geoffray, Lionel Jacques, Christian Kirsch, Stephen Smith, Joseph Adams, Emilie Gloaguen, Ruud Hoogeveen, Paul van der Hulst, Mikko Kiviranta, Jan van der Kuur, Aurélien Ledot, Bert-Joost van Leeuwen, Dennis van Loon, Bertrand Lyautey, Yann Parot, Kazuhiro Sakai, Henk van Weers, Shariefa Abdoelkariem, Thomas Adam, Christophe Adami, Corinne Aicardi, Hiroki Akamatsu, Pablo Eleazar Merino Alonso, Roberta Amato, Jérôme André, Matteo Angelinelli, Manuel Anon-Cancela, Shebli Anvar, Ricardo Atienza, Anthony Attard, Natalia Auricchio, Ana Balado, Florian Bancel, Lorenzo Ferrari Barusso, Arturo Bascuñan, Vivian Bernard, Alicia Berrocal, Sylvie Blin, Donata Bonino, François Bonnet, Patrick Bonny, Peter Boorman, Charles Boreux, Ayoub Bounab, Martin Boutelier, Kevin Boyce, Daniele Brienza, Marcel Bruijn, Andrea Bulgarelli, Simona Calarco, Paul Callanan, Alberto Prada Campello, Thierry Camus, Florent Canourgues, Vito Capobianco, Nicolas Cardiel, Florent Castellani, Oscar Cheatom, James Chervenak, Fabio Chiarello, Laurent Clerc, Nicolas Clerc, Beatriz Cobo, Odile Coeur-Joly, Alexis Coleiro, Stéphane Colonges, Leonardo Corcione, Mickael Coriat, Alexandre Coynel, Francesco Cuttaia, Antonino D’Ai, Fabio D’anca, Mauro Dadina, Christophe Daniel, Lea Dauner, Natalie DeNigris, Johannes Dercksen, Michael DiPirro, Eric Doumayrou, Luc Dubbeldam, Michel Dupieux, Simon Dupourqué, Jean Louis Durand, Dominique Eckert, Valvanera Eiriz, Eric Ercolani, Christophe Etcheverry, Fred Finkbeiner, Mariateresa Fiocchi, Hervé Fossecave, Philippe Franssen, Martin Frericks, Stefano Gabici, Florent Gant, Jian-Rong Gao, Fabio Gastaldello, Ludovic Genolet, Simona Ghizzardi, Ma Angeles Alcacera Gil, Elisa Giovannini, Olivier Godet, Javier Gomez-Elvira, Raoul Gonzalez, Manuel Gonzalez, Luciano Gottardi, Dolorès Granat, Michel Gros, Nicolas Guignard, Paul Hieltjes, Adolfo Jesús Hurtado, Kent Irwin, Christian Jacquey, Agnieszka Janiuk, Jean Jaubert, Maria Jiménez, Antoine Jolly, Thierry Jourdan, Sabine Julien, Bartosz Kedziora, Andrew Korb, Ingo Kreykenbohm, Ole König, Mathieu Langer, Philippe Laudet, Philippe Laurent, Monica Laurenza, Jean Lesrel, Sebastiano Ligori, Maximilian Lorenz, Alfredo Luminari, Bruno Maffei, Océane Maisonnave, Lorenzo Marelli, Didier Massonet, Irwin Maussang, Alejandro Gonzalo Melchor, Isabelle Le Mer, Francisco Javier San Millan, Jean-Pierre Millerioux, Teresa Mineo, Gabriele Minervini, Alexeï Molin, David Monestes, Nicola Montinaro, Baptiste Mot, David Murat, Kenichiro Nagayoshi, Yaël Nazé, Loïc Noguès, Damien Pailot, Francesca Panessa, Luigi Parodi, Pascal Petit, Enrico Piconcelli, Ciro Pinto, Jose Miguel Encinas Plaza, Borja Plaza, David Poyatos, Thomas Prouvé, Andy Ptak, Simonetta Puccetti, Elena Puccio, Pascale Ramon, Manuel Reina, Guillaume Rioland, Louis Rodriguez, Anton Roig, Bertrand Rollet, Mauro Roncarelli, Gilles Roudil, Tomasz Rudnicki, Julien Sanisidro, Luisa Sciortino, Vitor Silva, Michael Sordet, Javier Soto-Aguilar, Pierre Spizzi, Christian Surace, Miguel Fernández Sánchez, Emanuele Taralli, Guilhem Terrasa, Régis Terrier, Michela Todaro, Pietro Ubertini, Michela Uslenghi, Jan Geralt Bij de Vaate, Davide Vaccaro, Salvatore Varisco, Peggy Varnière, Laurent Vibert, María Vidriales, Fabrizio Villa, Boris Martin Vodopivec, Angela Volpe, Cor de Vries, Nicholas Wakeham, Gavin Walmsley, Michael Wise, Martin de Wit, Grzegorz Woźniak
{"title":"The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase","authors":"Didier Barret,&nbsp;Vincent Albouys,&nbsp;Jan-Willem den Herder,&nbsp;Luigi Piro,&nbsp;Massimo Cappi,&nbsp;Juhani Huovelin,&nbsp;Richard Kelley,&nbsp;J. Miguel Mas-Hesse,&nbsp;Stéphane Paltani,&nbsp;Gregor Rauw,&nbsp;Agata Rozanska,&nbsp;Jiri Svoboda,&nbsp;Joern Wilms,&nbsp;Noriko Yamasaki,&nbsp;Marc Audard,&nbsp;Simon Bandler,&nbsp;Marco Barbera,&nbsp;Xavier Barcons,&nbsp;Enrico Bozzo,&nbsp;Maria Teresa Ceballos,&nbsp;Ivan Charles,&nbsp;Elisa Costantini,&nbsp;Thomas Dauser,&nbsp;Anne Decourchelle,&nbsp;Lionel Duband,&nbsp;Jean-Marc Duval,&nbsp;Fabrizio Fiore,&nbsp;Flavio Gatti,&nbsp;Andrea Goldwurm,&nbsp;Roland den Hartog,&nbsp;Brian Jackson,&nbsp;Peter Jonker,&nbsp;Caroline Kilbourne,&nbsp;Seppo Korpela,&nbsp;Claudio Macculi,&nbsp;Mariano Mendez,&nbsp;Kazuhisa Mitsuda,&nbsp;Silvano Molendi,&nbsp;François Pajot,&nbsp;Etienne Pointecouteau,&nbsp;Frederick Porter,&nbsp;Gabriel W. Pratt,&nbsp;Damien Prêle,&nbsp;Laurent Ravera,&nbsp;Kosuke Sato,&nbsp;Joop Schaye,&nbsp;Keisuke Shinozaki,&nbsp;Konrad Skup,&nbsp;Jan Soucek,&nbsp;Tanguy Thibert,&nbsp;Jacco Vink,&nbsp;Natalie Webb,&nbsp;Laurence Chaoul,&nbsp;Desi Raulin,&nbsp;Aurora Simionescu,&nbsp;Jose Miguel Torrejon,&nbsp;Fabio Acero,&nbsp;Graziella Branduardi-Raymont,&nbsp;Stefano Ettori,&nbsp;Alexis Finoguenov,&nbsp;Nicolas Grosso,&nbsp;Jelle Kaastra,&nbsp;Pasquale Mazzotta,&nbsp;Jon Miller,&nbsp;Giovanni Miniutti,&nbsp;Fabrizio Nicastro,&nbsp;Salvatore Sciortino,&nbsp;Hiroya Yamaguchi,&nbsp;Sophie Beaumont,&nbsp;Edoardo Cucchetti,&nbsp;Matteo D’Andrea,&nbsp;Megan Eckart,&nbsp;Philippe Ferrando,&nbsp;Elias Kammoun,&nbsp;Simone Lotti,&nbsp;Jean-Michel Mesnager,&nbsp;Lorenzo Natalucci,&nbsp;Philippe Peille,&nbsp;Jelle de Plaa,&nbsp;Florence Ardellier,&nbsp;Andrea Argan,&nbsp;Elise Bellouard,&nbsp;Jérôme Carron,&nbsp;Elisabetta Cavazzuti,&nbsp;Mauro Fiorini,&nbsp;Pourya Khosropanah,&nbsp;Sylvain Martin,&nbsp;James Perry,&nbsp;Frederic Pinsard,&nbsp;Alice Pradines,&nbsp;Manuela Rigano,&nbsp;Peter Roelfsema,&nbsp;Denis Schwander,&nbsp;Guido Torrioli,&nbsp;Joel Ullom,&nbsp;Isabel Vera,&nbsp;Eduardo Medinaceli Villegas,&nbsp;Monika Zuchniak,&nbsp;Frank Brachet,&nbsp;Ugo Lo Cicero,&nbsp;William Doriese,&nbsp;Malcom Durkin,&nbsp;Valentina Fioretti,&nbsp;Hervé Geoffray,&nbsp;Lionel Jacques,&nbsp;Christian Kirsch,&nbsp;Stephen Smith,&nbsp;Joseph Adams,&nbsp;Emilie Gloaguen,&nbsp;Ruud Hoogeveen,&nbsp;Paul van der Hulst,&nbsp;Mikko Kiviranta,&nbsp;Jan van der Kuur,&nbsp;Aurélien Ledot,&nbsp;Bert-Joost van Leeuwen,&nbsp;Dennis van Loon,&nbsp;Bertrand Lyautey,&nbsp;Yann Parot,&nbsp;Kazuhiro Sakai,&nbsp;Henk van Weers,&nbsp;Shariefa Abdoelkariem,&nbsp;Thomas Adam,&nbsp;Christophe Adami,&nbsp;Corinne Aicardi,&nbsp;Hiroki Akamatsu,&nbsp;Pablo Eleazar Merino Alonso,&nbsp;Roberta Amato,&nbsp;Jérôme André,&nbsp;Matteo Angelinelli,&nbsp;Manuel Anon-Cancela,&nbsp;Shebli Anvar,&nbsp;Ricardo Atienza,&nbsp;Anthony Attard,&nbsp;Natalia Auricchio,&nbsp;Ana Balado,&nbsp;Florian Bancel,&nbsp;Lorenzo Ferrari Barusso,&nbsp;Arturo Bascuñan,&nbsp;Vivian Bernard,&nbsp;Alicia Berrocal,&nbsp;Sylvie Blin,&nbsp;Donata Bonino,&nbsp;François Bonnet,&nbsp;Patrick Bonny,&nbsp;Peter Boorman,&nbsp;Charles Boreux,&nbsp;Ayoub Bounab,&nbsp;Martin Boutelier,&nbsp;Kevin Boyce,&nbsp;Daniele Brienza,&nbsp;Marcel Bruijn,&nbsp;Andrea Bulgarelli,&nbsp;Simona Calarco,&nbsp;Paul Callanan,&nbsp;Alberto Prada Campello,&nbsp;Thierry Camus,&nbsp;Florent Canourgues,&nbsp;Vito Capobianco,&nbsp;Nicolas Cardiel,&nbsp;Florent Castellani,&nbsp;Oscar Cheatom,&nbsp;James Chervenak,&nbsp;Fabio Chiarello,&nbsp;Laurent Clerc,&nbsp;Nicolas Clerc,&nbsp;Beatriz Cobo,&nbsp;Odile Coeur-Joly,&nbsp;Alexis Coleiro,&nbsp;Stéphane Colonges,&nbsp;Leonardo Corcione,&nbsp;Mickael Coriat,&nbsp;Alexandre Coynel,&nbsp;Francesco Cuttaia,&nbsp;Antonino D’Ai,&nbsp;Fabio D’anca,&nbsp;Mauro Dadina,&nbsp;Christophe Daniel,&nbsp;Lea Dauner,&nbsp;Natalie DeNigris,&nbsp;Johannes Dercksen,&nbsp;Michael DiPirro,&nbsp;Eric Doumayrou,&nbsp;Luc Dubbeldam,&nbsp;Michel Dupieux,&nbsp;Simon Dupourqué,&nbsp;Jean Louis Durand,&nbsp;Dominique Eckert,&nbsp;Valvanera Eiriz,&nbsp;Eric Ercolani,&nbsp;Christophe Etcheverry,&nbsp;Fred Finkbeiner,&nbsp;Mariateresa Fiocchi,&nbsp;Hervé Fossecave,&nbsp;Philippe Franssen,&nbsp;Martin Frericks,&nbsp;Stefano Gabici,&nbsp;Florent Gant,&nbsp;Jian-Rong Gao,&nbsp;Fabio Gastaldello,&nbsp;Ludovic Genolet,&nbsp;Simona Ghizzardi,&nbsp;Ma Angeles Alcacera Gil,&nbsp;Elisa Giovannini,&nbsp;Olivier Godet,&nbsp;Javier Gomez-Elvira,&nbsp;Raoul Gonzalez,&nbsp;Manuel Gonzalez,&nbsp;Luciano Gottardi,&nbsp;Dolorès Granat,&nbsp;Michel Gros,&nbsp;Nicolas Guignard,&nbsp;Paul Hieltjes,&nbsp;Adolfo Jesús Hurtado,&nbsp;Kent Irwin,&nbsp;Christian Jacquey,&nbsp;Agnieszka Janiuk,&nbsp;Jean Jaubert,&nbsp;Maria Jiménez,&nbsp;Antoine Jolly,&nbsp;Thierry Jourdan,&nbsp;Sabine Julien,&nbsp;Bartosz Kedziora,&nbsp;Andrew Korb,&nbsp;Ingo Kreykenbohm,&nbsp;Ole König,&nbsp;Mathieu Langer,&nbsp;Philippe Laudet,&nbsp;Philippe Laurent,&nbsp;Monica Laurenza,&nbsp;Jean Lesrel,&nbsp;Sebastiano Ligori,&nbsp;Maximilian Lorenz,&nbsp;Alfredo Luminari,&nbsp;Bruno Maffei,&nbsp;Océane Maisonnave,&nbsp;Lorenzo Marelli,&nbsp;Didier Massonet,&nbsp;Irwin Maussang,&nbsp;Alejandro Gonzalo Melchor,&nbsp;Isabelle Le Mer,&nbsp;Francisco Javier San Millan,&nbsp;Jean-Pierre Millerioux,&nbsp;Teresa Mineo,&nbsp;Gabriele Minervini,&nbsp;Alexeï Molin,&nbsp;David Monestes,&nbsp;Nicola Montinaro,&nbsp;Baptiste Mot,&nbsp;David Murat,&nbsp;Kenichiro Nagayoshi,&nbsp;Yaël Nazé,&nbsp;Loïc Noguès,&nbsp;Damien Pailot,&nbsp;Francesca Panessa,&nbsp;Luigi Parodi,&nbsp;Pascal Petit,&nbsp;Enrico Piconcelli,&nbsp;Ciro Pinto,&nbsp;Jose Miguel Encinas Plaza,&nbsp;Borja Plaza,&nbsp;David Poyatos,&nbsp;Thomas Prouvé,&nbsp;Andy Ptak,&nbsp;Simonetta Puccetti,&nbsp;Elena Puccio,&nbsp;Pascale Ramon,&nbsp;Manuel Reina,&nbsp;Guillaume Rioland,&nbsp;Louis Rodriguez,&nbsp;Anton Roig,&nbsp;Bertrand Rollet,&nbsp;Mauro Roncarelli,&nbsp;Gilles Roudil,&nbsp;Tomasz Rudnicki,&nbsp;Julien Sanisidro,&nbsp;Luisa Sciortino,&nbsp;Vitor Silva,&nbsp;Michael Sordet,&nbsp;Javier Soto-Aguilar,&nbsp;Pierre Spizzi,&nbsp;Christian Surace,&nbsp;Miguel Fernández Sánchez,&nbsp;Emanuele Taralli,&nbsp;Guilhem Terrasa,&nbsp;Régis Terrier,&nbsp;Michela Todaro,&nbsp;Pietro Ubertini,&nbsp;Michela Uslenghi,&nbsp;Jan Geralt Bij de Vaate,&nbsp;Davide Vaccaro,&nbsp;Salvatore Varisco,&nbsp;Peggy Varnière,&nbsp;Laurent Vibert,&nbsp;María Vidriales,&nbsp;Fabrizio Villa,&nbsp;Boris Martin Vodopivec,&nbsp;Angela Volpe,&nbsp;Cor de Vries,&nbsp;Nicholas Wakeham,&nbsp;Gavin Walmsley,&nbsp;Michael Wise,&nbsp;Martin de Wit,&nbsp;Grzegorz Woźniak","doi":"10.1007/s10686-022-09880-7","DOIUrl":"10.1007/s10686-022-09880-7","url":null,"abstract":"<div><p>The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. <i>The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.</i></p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 2","pages":"373 - 426"},"PeriodicalIF":3.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5045818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Pulsar search acceleration using FPGAs and OpenCL templates 脉冲星搜索加速使用fpga和OpenCL模板
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-01-23 DOI: 10.1007/s10686-022-09888-z
Julian Oppermann, Mitchell B. Mickaliger, Oliver Sinnen
{"title":"Pulsar search acceleration using FPGAs and OpenCL templates","authors":"Julian Oppermann,&nbsp;Mitchell B. Mickaliger,&nbsp;Oliver Sinnen","doi":"10.1007/s10686-022-09888-z","DOIUrl":"10.1007/s10686-022-09888-z","url":null,"abstract":"<div><p>The Square Kilometre Array (SKA) is the world’s largest radio telescope currently under construction, and will employ elaborate signal processing to detect new pulsars, i.e. highly magnetised rotating neutron stars. This paper addresses the acceleration of demanding computations for this pulsar search on Field-Programmable Gate Arrays (FPGAs) using a new high-level design process based on OpenCL templates that is transferable to other scientific problems. The successful FPGA acceleration of large-scale scientific workloads requires custom architectures that fully exploit the parallel computing capabilities of modern reconfigurable hardware and are amenable to substantial design space exploration. OpenCL-based high-level synthesis toolchains, with their ability to express interconnected multi-kernel pipelines in a single source language, excel in this domain. However, the achievable performance strongly depends on how well the compiler can infer desirable hardware structures from the code. One key aspect to excellent performance is commonly the uninterrupted, high-bandwidth streaming of data into and through the design. This is difficult to achieve in complex designs when data order needs to be re-arranged, e.g. transposed. It is equally hard to pre-fetch and burst-load from DDR memory when reading occurs in non-trivial patterns. In this paper, we propose new approaches to these two problems that use OpenCL-based code templates.</p><p>We demonstrate the practical benefits of these approaches with the acceleration of a key component in the SKA’s pulsar search pipeline: the Fourier Domain Acceleration Search (FDAS) module. Using our proposed methodology, we are able to develop a more scalable FDAS accelerator architecture than previously possible. We explore its design space to eventually achieve a 10x throughput improvement over a prior, thoroughly optimised implementation in plain OpenCL.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"239 - 266"},"PeriodicalIF":3.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09888-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4896279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hadronic interaction model dependence in cosmic Gamma-ray flux estimation using an extensive air shower array with a muon detector 利用带有μ子探测器的广泛空气阵雨阵列估算宇宙伽马射线通量中的强子相互作用模型依赖
IF 3 3区 物理与天体物理
Experimental Astronomy Pub Date : 2023-01-17 DOI: 10.1007/s10686-022-09883-4
S. Okukawa, M. Anzorena, S. Asano, C. A. H. Condori, E. de la Fuente, A. Gomi, K. Hibino, N. Hotta, A. Jimenez-Meza, Y. Katayose, C. Kato, S. Kato, T. Kawashima, K. Kawata, T. Koi, H. Kojima, D. Kurashige, J. Lozoya, R. Mayta, P. Miranda, K. Munakata, K. Nagaya, Y. Nakamura, Y. Nakazawa, C. Nina, M. Nishizawa, S. Ogio, M. Ohnishi, A. Oshima, M. Raljevic, H. Rivera, T. Saito, Y. Sakakibara, T. Sako, T. K. Sako, S. Shibata, A. Shiomi, M. Subieta, N. Tajima, W. Takano, M. Takita, Y. Tameda, K. Tanaka, R. Ticona, I. Toledano-Juarez, H. Tsuchiya, Y. Tsunesada, S. Udo, K. Yamazaki, Y. Yokoe
{"title":"Hadronic interaction model dependence in cosmic Gamma-ray flux estimation using an extensive air shower array with a muon detector","authors":"S. Okukawa,&nbsp;M. Anzorena,&nbsp;S. Asano,&nbsp;C. A. H. Condori,&nbsp;E. de la Fuente,&nbsp;A. Gomi,&nbsp;K. Hibino,&nbsp;N. Hotta,&nbsp;A. Jimenez-Meza,&nbsp;Y. Katayose,&nbsp;C. Kato,&nbsp;S. Kato,&nbsp;T. Kawashima,&nbsp;K. Kawata,&nbsp;T. Koi,&nbsp;H. Kojima,&nbsp;D. Kurashige,&nbsp;J. Lozoya,&nbsp;R. Mayta,&nbsp;P. Miranda,&nbsp;K. Munakata,&nbsp;K. Nagaya,&nbsp;Y. Nakamura,&nbsp;Y. Nakazawa,&nbsp;C. Nina,&nbsp;M. Nishizawa,&nbsp;S. Ogio,&nbsp;M. Ohnishi,&nbsp;A. Oshima,&nbsp;M. Raljevic,&nbsp;H. Rivera,&nbsp;T. Saito,&nbsp;Y. Sakakibara,&nbsp;T. Sako,&nbsp;T. K. Sako,&nbsp;S. Shibata,&nbsp;A. Shiomi,&nbsp;M. Subieta,&nbsp;N. Tajima,&nbsp;W. Takano,&nbsp;M. Takita,&nbsp;Y. Tameda,&nbsp;K. Tanaka,&nbsp;R. Ticona,&nbsp;I. Toledano-Juarez,&nbsp;H. Tsuchiya,&nbsp;Y. Tsunesada,&nbsp;S. Udo,&nbsp;K. Yamazaki,&nbsp;Y. Yokoe","doi":"10.1007/s10686-022-09883-4","DOIUrl":"10.1007/s10686-022-09883-4","url":null,"abstract":"<div><p>Observation techniques of high-energy gamma rays using air showers have remarkably progressed via the Tibet AS<i>γ</i>, HAWC, and LHAASO experiments. These observations have significantly contributed to gamma-ray astronomy in the northern sky’s sub-PeV region. Moreover, in the southern sky, the ALPACA experiment is underway at 4,740 m altitude on the Chacaltaya plateau in Bolivia. This experiment estimates the gamma-ray flux from the difference between the number of on-source and off-source events by real data, utilizing the gamma-ray detection efficiency calculated through Monte Carlo simulations, which in turn depends on the hadronic interaction models. Even though the number of cosmic-ray background events can be experimentally estimated, this model dependence affects the estimation of gamma-ray detection efficiency. However, previous reports have assumed that the model dependence is negligible and have not included it in the error of gamma-ray flux estimation. Using ALPAQUITA, the prototype experiment of ALPACA, we quantitatively evaluated the model dependence on hadronic interaction models for the first time. We evaluate the model dependence on hadronic interactions as less than 3.6 % in the typical gamma-ray flux estimation performed by ALPAQUITA; this is negligible compared with other uncertainties such as energy scale uncertainty in the energy range from 6 to 300 TeV, which is dominated by the Monte Carlo statistics. This upper limit of 3.6 % model dependence is expected to apply to ALPACA.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 2","pages":"325 - 342"},"PeriodicalIF":3.0,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4680569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信